Open Access
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Article Number 28
Number of page(s) 17
Published online 31 October 2022
  1. E. Paatero, J. Sjöblom, Phase behaviour in metal extraction systems, Hydrometallurgy 25, 231 (1990) [CrossRef] [Google Scholar]
  2. R.G. Laughlin, The Aqueous Phase Behavior of Surfactants. 1. print. pbk ed. (Academic Press, London, 1996) [Google Scholar]
  3. T. Zemb, W. Kunz, Weak aggregation: state of the art, expectations and open questions, Curr. Opin. Colloid Interface Sci. 22, 113 (2016) [CrossRef] [Google Scholar]
  4. Y. Chevalier, T. Zemb, The structure of micelles and microemulsions, Rep. Prog. Phys. 53, 279 (1990) [CrossRef] [Google Scholar]
  5. M. Gradzielski, M. Duvail, P.M. de Molina, M. Simon, Y. Talmon, T. Zemb, Using microemulsions: formulation based on knowledge of their mesostructure, Chem. Rev. 121, 5671 (2021) [CrossRef] [Google Scholar]
  6. K. Fontell, A. Ceglie, B. Lindman, B. Ninham, C.J. Nielsen, F. Urso, J. Weidlein, R.A. Zingaro, Some observations on phase diagrams and structure in binary and ternary systems of didodecyldimethylammonium Bromide, Acta Chem. Scand. A 40, 247 (1986) [CrossRef] [Google Scholar]
  7. D. Roux, A.M. Bellocq, M.S. Leblanc, An interpretation of the phase diagrams of microemulsions, Chem. Phys. Lett. 94, 156 (1983) [CrossRef] [Google Scholar]
  8. V.A. Parsegian, T. Zemb, Hydration forces: observations, explanations, expectations, questions, Curr. Opin. Colloid Interface Sci. 16, 618 (2011) [CrossRef] [Google Scholar]
  9. J.-F. Dufrêche, T. Zemb, Bending: from thin interfaces to molecular films in microemulsions, Curr. Opin. Colloid Interface Sci. 49, 133 (2020) [CrossRef] [Google Scholar]
  10. P.A. Winsor, Hydrotropy, solubilisation and related emulsification processes, Trans. Faraday Soc. 44, 376 (1948) [CrossRef] [Google Scholar]
  11. T. Zemb, C. Bauer, P. Bauduin, L. Belloni, C. Déjugnat, O. Diat, V. Dubois, J.-F. Dufrêche, S. Dourdain, M. Duvail, C. Larpent, F. Testard, S. Pellet-Rostaing, Recycling metals by controlled transfer of ionic species between complex fluids: en route to “Ienaics”, Colloid Polym. Sci. 293, 1 (2015) [CrossRef] [Google Scholar]
  12. M. Špadina, J.-F. Dufrêche, S. Pellet-Rostaing, S. Marčelja, T. Zemb, Molecular forces in liquid–liquid extraction, Langmuir 37, 10637 (2021) [CrossRef] [Google Scholar]
  13. P. Bauduin, F. Testard, T. Zemb, Solubilization in alkanes by alcohols as reverse hydrotropes or “Lipotropes”, J. Phys. Chem. B. 112, 12354 (2008) [CrossRef] [Google Scholar]
  14. R.D. Rogers, A.H. Bond, C.B. Bauer, Metal ion separations in polyethylene glycol-based aqueous biphasic systems, Sep. Sci. Technol. 28, 1091 (1993) [CrossRef] [Google Scholar]
  15. C. Larpent, A. Laplace, T. Zemb, Macrocyclic sugar-based surfactants: block molecules combining self-aggregation and complexation properties, Angew. Chem. Int. Ed. 43, 3163 (2004) [CrossRef] [Google Scholar]
  16. M. Pleines, Ph.D. thesis, Thése de l’Université de Montpellier, 2018 [Google Scholar]
  17. J. Rydberg, M. Cox, C. Musikas, G.R. Choppin, Solvent Extraction Principles and Practice, Revised and Expanded (Taylor & Francis, 2004) [CrossRef] [Google Scholar]
  18. B. Bonin, B. Bouquin, M. Dozol, M. Lecomte, A. Vall’ee, in Nuclear Fuels, edited by J.-F. Parisot (CEA Saclay and Groupe Moniteur, Paris, 2009) [Google Scholar]
  19. E. Abonneau, P. Baron, C. Berthon, L. Berthon, A. Beziat, I. Bisel, L. Bonin, E. Bosse, B. Boullis, J.C. Broudic, M.C. Charbonnel, N. Chauvin, C. Den Auwer, B. Dinh, J. Duhamet, J.M. Escleine, S. Grandjean, P. Guilbaud, D. Guillaneux, D. Guillaumont, C. Hill, J. Lacquement, M. Masson, M. Miguirditchian, P. Moisy, M. Pelletier, A. Ravenet, C. Rostaing, V. Royet, A. Ruas, E. Simoni, C. Sorel, A. Vaudano, L. Venault, D. Warin, A. Zaetta, P. Pradel, B. Bonin, B. Bouquin, M. Dozol, M. Lecomte, A. Forestier, M. Beauvy, G. Berthoud, M. Defranceschi, G. Ducros, Y. Guerin, C. Latge, Y. Limoge, C. Madic, G. Santarini, J.M. Seiler, P. Sollogoob, E. Vernaz, F. Bazile, J.P. Parisot, P. Finot, J.F. Roberts, Treatment and Recycling of Spent Nuclear Fuel Actinide Partitioning – Application to Waste Management (CEA and Editions du Moniteur, France, 2008), [Google Scholar]
  20. C. Bauer, P. Bauduin, J.F. Dufrêche, T. Zemb, O. Diat, Liquid/liquid metal extraction: phase diagram topology resulting from molecular interactions between extractant, ion, oil and water, Eur. Phys. J. Spec. Top. 213, 225 (2012) [CrossRef] [Google Scholar]
  21. B. Goldschmidt, L’Aventure atomique (Fayard, 1962) [Google Scholar]
  22. Q. Li, T. Li, J. Wu, Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives, Colloids Surf. A: Physicochem. Eng. Aspects 197, 101 (2002) [CrossRef] [Google Scholar]
  23. S. Nave, J. Eastoe, J. Penfold, What is so special about Aerosol-OT? 1. Aqueous systems, Langmuir 16, 8733 (2000) [CrossRef] [Google Scholar]
  24. S. Nave, J. Eastoe, R.K. Heenan, D. Steytler, I. Grillo, What is so special about Aerosol-OT? 2. Microemulsion systems, Langmuir 16, 8741 (2000) [CrossRef] [Google Scholar]
  25. M.J. Hou, M. Kim, D.O. Shah, A light scattering study on the droplet size and interdroplet interaction in microemulsions of AOT–oil–water system, J. Colloid Interface Sci. 123, 398 (1988) [CrossRef] [Google Scholar]
  26. H.-F. Eicke, H. Christen, Is water critical to the formation of micelles in apolar media?, Helv. Chim. Acta 61, 2258 (1978) [CrossRef] [Google Scholar]
  27. M. Sagisaka, T. Narumi, M. Niwase, S. Narita, A. Ohata, C. James, A. Yoshizawa, E. Taffin de Givenchy, F. Guittard, S. Alexander, J. Eastoe, Hyperbranched hydrocarbon surfactants give fluorocarbon-like low surface energies, Langmuir 30, 6057 (2014) [CrossRef] [Google Scholar]
  28. H. Kunieda, K. Shinoda, Solution behavior of aerosol ot/water/oil system, J. Colloid Interface Sci. 70, 577 (1979) [CrossRef] [Google Scholar]
  29. T. Assih, Evolution of the radius of the inverse micelles at high dilution in the AerosoI-OT/water/n-decane system, J. Colloid Interface Sci. 89, 5 (1982) [Google Scholar]
  30. H. Kunieda, K. Shinoda, Solution behavior and hydrophile-lipophile balance temperature in the aerosol OT-isooctane-brine system: correlation between microemulsions and ultralow interfacial tensions, J. Colloid Interface Sci. 75, 601 (1980) [CrossRef] [Google Scholar]
  31. A. Artese, S. Dourdain, N. Felines, G. Arrachart, N. Boubals, P. Guilbaud, S. Pellet-Rostaing, Bifunctional amidophosphonate molecules for uranium extraction in nitrate acidic media, Solvent Extr. Ion Exch. 38, 703 (2020) [CrossRef] [Google Scholar]
  32. W. Dembiński, T. Mioduski, Europium isotope separation in the HCl/HDEHP extraction system, J. Radioanal. Nucl. Chem. Lett. 199, 159 (1995) [CrossRef] [Google Scholar]
  33. J. Rey, S. Atak, S. Dourdain, G. Arrachart, L. Berthon, S. Pellet-Rostaing, Synergistic extraction of rare earth elements from phosphoric acid medium using a mixture of surfactant AOT and DEHCNPB, Solvent Extr. Ion Exch. 35, 321 (2017) [CrossRef] [Google Scholar]
  34. G.J. Lumetta, A.V. Gelis, J.C. Braley, J.C. Carter, J.W. Pittman, M.G. Warner, G.F. Vandegrift, The TRUSPEAK concept: combining CMPO and HDEHP for separating trivalent lanthanides from the transuranic elements, Solvent Extr. Ion Exch. 31, 223 (2013) [CrossRef] [Google Scholar]
  35. A. El Maangar, J. Theisen, C. Penisson, T. Zemb, J.-C.P. Gabriel, A microfluidic study of synergic liquid–liquid extraction of rare earth elements, Phys. Chem. Chem. Phys. 22, 5449 (2020) [CrossRef] [Google Scholar]
  36. D. Beltrami, A. Chagnes, M. Haddad, H. Laureano, H. Mokhtari, B. Courtaud, S. Jugé, G. Cote, Solvent extraction studies of uranium(VI) from phosphoric acid: Role of synergistic reagents in mixture with bis(2-ethylhexyl) phosphoric acid, Hydrometallurgy 144–145, 207 (2014) [CrossRef] [Google Scholar]
  37. S. Dourdain, I. Hofmeister, O. Pecheur, J.-F. Dufrêche, R. Turgis, A. Leydier, J. Jestin, F. Testard, S. Pellet-Rostaing, T. Zemb, Synergism by coassembly at the origin of ion selectivity in liquid–liquid extraction, Langmuir 28, 11319 (2012) [CrossRef] [Google Scholar]
  38. J. Rey, S. Dourdain, J.-F. Dufrêche, L. Berthon, J.M. Muller, S. Pellet-Rostaing, T. Zemb, Thermodynamic description of synergy in solvent extraction: I. Enthalpy of mixing at the origin of synergistic aggregation, Langmuir 32, 13095 (2016) [CrossRef] [Google Scholar]
  39. J. Rey, M. Bley, J.-F. Dufrêche, S. Gourdin, S. Pellet-Rostaing, T. Zemb, S. Dourdain, Thermodynamic description of synergy in solvent extraction: II Thermodynamic balance of driving forces implied in synergistic extraction, Langmuir 33, 13168 (2017) [CrossRef] [Google Scholar]
  40. H.-F. Eicke, Surfactants in nonpolar solvents, in Micelles (Springer, 1980), pp. 85–145. [CrossRef] [Google Scholar]
  41. Q. Li, T. Li, J. Wu, Comparative study on the structure of reverse micelles. 2. FT-IR, 1H NMR, and electrical conductance of H2O/AOT/NaDEHP/n-Heptane systems, J. Phys. Chem. B. 104, 9011 (2000) [CrossRef] [Google Scholar]
  42. T. Lopian, Ph.D. thesis, Thése de l’Université de Montpellier, 2017 [Google Scholar]
  43. J.-M. Aubry, J.F. Ontiveros, J.-L. Salager, V. Nardello-Rataj, Use of the normalized hydrophilic-lipophilic-deviation (HLDN) equation for determining the equivalent alkane carbon number (EACN) of oils and the preferred alkane carbon number (PACN) of nonionic surfactants by the fish-tail method (FTM), Adv. Colloid Interface Sci. 276, 102099 (2020) [CrossRef] [Google Scholar]
  44. E.J. Acosta, The HLD–NAC equation of state for microemulsions formulated with nonionic alcohol ethoxylate and alkylphenol ethoxylate surfactants, Colloids Surf. A: Physicochem. Eng. Aspects 320, 193 (2008) [CrossRef] [Google Scholar]
  45. E. Acosta, Engineering cosmetics using the Net-Average-Curvature (NAC) model, Curr. Opin. Colloid Interface Sci. 48, 149 (2020) [CrossRef] [Google Scholar]
  46. E. Acosta, E. Szekeres, D.A. Sabatini, J.H. Harwell, Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions, Langmuir 19, 186 (2003) [CrossRef] [Google Scholar]
  47. S.K. Kiran, E.J. Acosta, Predicting the morphology and viscosity of microemulsions using the HLD-NAC Model, Ind. Eng. Chem. Res. 49, 3424 (2010) [CrossRef] [Google Scholar]
  48. R. Leung, D.O. Shah, Solubilization and phase equilibria of water-in-oil microemulsions, J. Colloid Interface Sci. 120, 320 (1987) [CrossRef] [Google Scholar]
  49. R. Leung, D.O. Shah, Solubilization and phase equilibria of water-in-oil microemulsions II, J. Colloid Interface Sci. 120, 330 (1987) [CrossRef] [Google Scholar]
  50. E. Paatero, P. Ernola, J. Sjöblom, L. Hummel-stedt, Formation of microemulsion in solvent extraction systems containing Cyanex 272, in Proceedings of the International Solvent Extraction Conference (ISEC’88) (1988), p. 124 [Google Scholar]
  51. E. Paatero, T. Lantto, P. Ernola, The effect of trioctylphosphine oxide on phase and extraction equilibria in systems containing bis(2,4,4-trimethylpentyl) phosphinic acid, Solvent Extr. Ion Exch. 8, 371 (1990) [CrossRef] [Google Scholar]
  52. Z.-J. Yu, R.D. Neuman, Reversed micellar solution-to-bicontinuous microemulsion transition in sodium bis(2-ethylhexyl) phosphate/n-heptane/water system, Langmuir 11, 1081 (1995) [CrossRef] [Google Scholar]
  53. A. Shioi, M. Harada, K. Matsumoto, Phase equilibrium of sodium bis(2-ethylhexyl)phosphate/water/n-heptane/sodium chloride microemulsion, J. Phys. Chem. 95, 7495 (1991) [CrossRef] [Google Scholar]
  54. A. Shioi, M. Harada, M. Tanabe, Static light scattering from oil-rich microemulsions containing polydispersed cylindrical aggregates in sodium bis(2-ethylhexyl) phosphate system, J. Phys. Chem. 99, 4750 (1995) [CrossRef] [Google Scholar]
  55. A. Faure, A.M. Tistchenko, T. Zemb, C. Chachaty, Aggregation and dynamical behavior in sodium diethylhexyl phosphate/water/benzene inverted micelles, J. Phys. Chem. 89, 3373 (1985) [CrossRef] [Google Scholar]
  56. Z.-J. Yu, R.D. Neuman, Giant rodlike reversed micelles formed by sodium bis(2-ethylhexyl) phosphate in n-heptane, Langmuir 10, 2553 (1994) [CrossRef] [Google Scholar]
  57. Z.J. Yu, N.F. Zhou, R.D. Neuman, On the role of water in the formation of reversed micelles: an antimicellization agent, Langmuir 8, 1885 (1992) [CrossRef] [Google Scholar]
  58. A. Faure, T. Ahlnas, A.M. Tistchenko, C. Chachaty, Surfactant conformation and solvent penetration in sodium di-2-ethylhexyl phosphate reversed micelles. A multinuclear relaxation study, J. Phys. Chem. 91, 1827 (1987) [CrossRef] [Google Scholar]
  59. S.S. Quintana, R.D. Falcone, J.J. Silber, N.M. Correa, Comparison between two anionic reverse micelle interfaces: the role of water–surfactant interactions in interfacial properties, ChemPhysChem 13, 115 (2012) [CrossRef] [Google Scholar]
  60. E.B. Leodidis, T.A. Hatton, Amino acids in AOT reversed micelles. 1. Determination of interfacial partition coefficients using the phase-transfer method, J. Phys. Chem. 94, 6400 (1990) [CrossRef] [Google Scholar]
  61. E.B. Leodidis, T.A. Hatton, Amino acids in AOT reversed micelles. 2. The hydrophobic effect and hydrogen bonding as driving forces for interfacial solubilization, J. Phys. Chem. 94, 6411 (1990) [CrossRef] [Google Scholar]
  62. L. Berthon, L. Martinet, F. Testard, C. Madic, T. Zemb, Solvent penetration and sterical stabilization of reverse aggregates based on the DIAMEX process extracting molecules: consequences for the third phase formation, Solvent Extr. Ion Exch. 25, 545 (2007) [CrossRef] [Google Scholar]
  63. S. Alexander, J. Eastoe, A.M. Lord, F. Guittard, A.R. Barron, Branched hydrocarbon low surface energy materials for superhydrophobic nanoparticle derived surfaces, ACS Appl. Mater. Interfaces 8, 660 (2016) [CrossRef] [Google Scholar]
  64. S.J. Chen, D.F. Evans, B.W. Ninham, D.J. Mitchell, F.D. Blum, S. Pickup, Curvature as a determinant of microstructure and microemulsions, J. Phys. Chem. 90, 842 (1986) [CrossRef] [Google Scholar]
  65. P. Bauduin, D. Touraud, W. Kunz, Design of low-toxic and temperature-sensitive anionic microemulsions using short propyleneglycol alkyl ethers as cosurfactants, Langmuir 21, 8138 (2005) [CrossRef] [Google Scholar]
  66. P. Bauduin, L. Wattebled, S. Schrödle, D. Touraud, W. Kunz, Temperature dependence of industrial propylene glycol alkyl ether/water mixtures, J. Mol. Liq. 115, 23 (2004) [CrossRef] [Google Scholar]
  67. W. Kunz, K. Holmberg, T. Zemb, Hydrotropes, Curr. Opin. Colloid Interface Sci. 22, 99 (2016) [CrossRef] [Google Scholar]
  68. J. Mehringer, E. Hofmann, D. Touraud, S. Koltzenburg, M. Kellermeier, W. Kunz, Salting-in and salting-out effects of short amphiphilic molecules: a balance between specific ion effects and hydrophobicity, Phys. Chem. Chem. Phys. 23, 1381 (2021) [CrossRef] [Google Scholar]
  69. B. Ramsauer, R. Neueder, W. Kunz, Erratum to “Isobaric vapour–liquid equilibria of binary 1-propoxy-2-propanol mixtures with water and alcohols at reduced pressure” Fluid Phase Equilibria 272 (2008) 84–92, Fluid Phase Equilib. 277, 162 (2009) [CrossRef] [Google Scholar]
  70. B. Ramsauer, M.M. Meier, R. Neueder, W. Kunz, Conductivity studies of tetrabutylammonium salts in 1-propoxy-2-propanol: ion-association in dilute solutions, Acta Chim. Slovenica 56, 30 (2009) [Google Scholar]
  71. T.F. Tadros, Self-Organized Surfactant Structures (Wiley, Somerset, 2011) [Google Scholar]
  72. M.S. Leaver, U. Olsson, H. Wennerström, R. Strey, U. Würz, Phase behaviour and structure in a non-ionic surfactant–oil–water mixture, J. Chem. Soc., Faraday Trans. 91, 4269 (1995) [CrossRef] [Google Scholar]
  73. T. Lopian, S. Dourdain, W. Kunz, T. Zemb, A formulator’s cut of the phase prism for optimizing selective metal extraction, Colloids Surf. A: Physicochem. Eng. Aspects 557, 2 (2018) [CrossRef] [Google Scholar]
  74. R.J. Ellis, T. Demars, G. Liu, J. Niklas, O.G. Poluektov, I.A. Shkrob, In the bottlebrush garden: the structural aspects of coordination polymer phases formed in lanthanide extraction with alkyl phosphoric acids, J. Phys. Chem. B 119, 11910 (2015) [CrossRef] [Google Scholar]
  75. Dow Chemical Company, L.H. Horsley, W.S. Tamplin, eds., Azeotropic Data (American Chemical Society, Washington, 1952) [Google Scholar]
  76. M. Clausse, L. Nicolas-Morgantini, A. Zradba, D. Tourand, Microemulsion Systems (Marcell Dekker, 1987) [Google Scholar]
  77. G. Guerin, A.M. Bellocq, Effect of salt on the phase behavior of the ternary system water-pentanol-sodium dodecylsulfate, J. Phys. Chem. 92, 2550 (1988) [CrossRef] [Google Scholar]
  78. S.J. Chen, D.F. Evans, B.W. Ninham, Properties and structure of three-component ionic microemulsions, J. Phys. Chem. 88, 1631 (1984) [CrossRef] [Google Scholar]
  79. F.D. Blum, S. Pickup, B. Ninham, S.J. Chen, D.F. Evans, Structure and dynamics in three-component microemulsions, J. Phys. Chem. 89, 711 (1985) [CrossRef] [Google Scholar]
  80. I.S. Barnes, P.-J. Derian, S.T. Hyde, B.W. Ninham, T.N. Zemb, A disordered lamellar structure in the isotropic phase of a ternary double-chain surfactant system, J. Phys. France 51, 2605 (1990) [CrossRef] [EDP Sciences] [Google Scholar]
  81. J.J. Booth, S. Abbott, S. Shimizu, Mechanism of hydrophobic drug solubilization by small molecule hydrotropes, J. Phys. Chem. B 116, 14915 (2012) [CrossRef] [Google Scholar]
  82. C. Déjugnat, L. Berthon, V. Dubois, Y. Meridiano, S. Dourdain, D. Guillaumont, S. Pellet-Rostaing, T. Zemb, Liquid-liquid extraction of acids and water by a malonamide: i-anion specific effects on the polar core microstructure of the aggregated malonamide, Solvent Extr. Ion Exch. 32, 601 (2014) [CrossRef] [Google Scholar]
  83. C. Déjugnat, J.-F. Dufrêche, T. Zemb, Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide, Phys. Chem. Chem. Phys. 13, 6914 (2011) [CrossRef] [Google Scholar]
  84. H. Kellay, B.P. Binks, Y. Hendrikx, L.T. Lee, J. Meunier, Properties of surfactant monolayers in relation to microemulsion phase behaviour, Adv. Colloid Interface Sci. 49, 85 (1994) [CrossRef] [Google Scholar]
  85. Z.-J. Yu, N.-F. Zhou, R.D. Neuman, The role of water in the formation of reversed micelles: an antimicellization agent, Langmuir 8, 1885 (1992) [CrossRef] [Google Scholar]
  86. E.B. Leodidis, A.S. Bommarius, T.A. Hatton, Amino acids in reversed micelles. 3. Dependence of the interfacial partition coefficient on excess phase salinity and interfacial curvature, J. Phys. Chem. 95, 5943 (1991) [CrossRef] [Google Scholar]
  87. E.B. Leodidis, T.A. Hatton, Amino acids in reversed micelles. 4. Amino acids as cosfurfactants, J. Phys. Chem. 95, 5957 (1991) [CrossRef] [Google Scholar]
  88. Y. Akama, Extraction mechanism of Cr(VI) on the aqueous two-phase system of tetrabutylammonium bromide and (NH4)2SO4 mixture, Talanta 57, 681 (2002) [CrossRef] [Google Scholar]
  89. V. Tchakalova, T. Zemb, D. Benczédi, Evaporation triggered self-assembly in aqueous Fragrance-Ethanol mixtures and its impact on fragrance performance, Colloids Surf. A: Physicochem. Eng. Aspects 460, 414 (2014) [CrossRef] [Google Scholar]
  90. S. Schöttl, D. Horinek, Aggregation in detergent-free ternary mixtures with microemulsion-like properties, Curr. Opin. Colloid Interface Sci. 22, 8 (2016) [CrossRef] [Google Scholar]
  91. T.N. Zemb, M. Klossek, T. Lopian, J. Marcus, S. Schöettl, D. Horinek, S.F. Prevost, D. Touraud, O. Diat, S. Marčelja, W. Kunz, How to explain microemulsions formed by solvent mixtures without conventional surfactants, Proc. Nat. Acad. Sci. 113, 4260 (2016) [CrossRef] [Google Scholar]
  92. T. Zemb, R. Rosenberg, S. Marčelja, D. Haffke, J.-F. Dufrêche, W. Kunz, D. Horinek, H. Cölfen, Phase separation of binary mixtures induced by soft centrifugal fields, Phys. Chem. Chem. Phys. 23, 8261 (2021) [CrossRef] [Google Scholar]
  93. P. Bauduin, T. Zemb, Perpendicular and lateral equations of state in layered systems of amphiphiles, Curr. Opin. Colloid Interface Sci. 19, 9 (2014) [CrossRef] [Google Scholar]
  94. Th Zemb, L. Belloni, M. Dubois, A. Aroti, E. Leontidis, Can we use area per surfactant as a quantitative test model of specific ion effects? Curr. Opin. Colloid Interface Sci. 9, 74 (2004) [CrossRef] [Google Scholar]
  95. C. Tanford, Micelle shape and size, J. Phys. Chem. 76, 3020 (1972) [CrossRef] [Google Scholar]
  96. A. Aroti, E. Leontidis, M. Dubois, T. Zemb, Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part I: swelling and in-plane equations of state, Biophys. J. 93, 1580 (2007) [CrossRef] [Google Scholar]
  97. W. Kunz, F. Testard, T. Zemb, Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature, Langmuir 25, 112 (2009) [CrossRef] [Google Scholar]
  98. S.-H. Chen, S.-L. Chang, R. Strey, Structural evolution within the one-phase region of a three-component microemulsion system: Water–n-decane–sodium-bis-ethylhexylsulfosuccinate (AOT), J. Chem. Phys. 93, 1907 (1990) [CrossRef] [Google Scholar]
  99. L.J. Magid, K.A. Daus, P.D. Butler, R.B. Quincy, Aggregation of sulfosuccinate surfactants in water, J. Phys. Chem. 87, 5472 (1983) [CrossRef] [Google Scholar]
  100. R.-N. Hwan, C.A. Miller, T. Fort, Determination of microemulsion phase continuity and drop size by ultracentrifugation, J. Colloid Interface Sci. 68, 221 (1979) [CrossRef] [Google Scholar]
  101. M. Dvolaitzky, M. Guyot, M. Lagües, J.P. Le Pesant, R. Ober, C. Sauterey, C. Taupin, A structural description of liquid particle dispersions: ultracentrifugation and small angle neutron scattering studies of microemulsions, J. Chem. Phys. 69, 3279 (1978) [CrossRef] [Google Scholar]
  102. K. Ishikawa, M. Behrens, S. Eriksson, D. Topgaard, U. Olsson, H. Wennerström, Microemulsions of record low amphiphile concentrations are affected by the ambient gravitational field, J. Phys. Chem. B. 120, 6074 (2016) [CrossRef] [Google Scholar]
  103. S.A. Vitale, J.L. Katz, Liquid droplet dispersions formed by homogeneous liquid–liquid nucleation: “The Ouzo Effect”, Langmuir 19, 4105 (2003) [CrossRef] [Google Scholar]
  104. D. Stamberga, M.R. Healy, V.S. Bryantsev, C. Albisser, Y. Karslyan, B. Reinhart, A. Paulenova, M. Foster, I. Popovs, K. Lyon, B.A. Moyer, S. Jansone-Popova, Structure activity relationship approach toward the improved separation of rare-earth elements using diglycolamides, Inorg. Chem. 59, 17620 (2020) [CrossRef] [Google Scholar]
  105. M. Špadina, K. Bohinc, T. Zemb, J.-F. Dufrêche, Synergistic solvent extraction is driven by entropy, ACS Nano. 13, 13745 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.