EPJ Nuclear Sci. Technol.
Volume 7, 2021
Fuel Cycle Simulation TWoFCS 2021
Article Number 19
Number of page(s) 13
Published online 03 November 2021
  1. E. Minari, T. Okamura, M. Nakase, H. Asano, K. Takeshita, Evaluation of the technical options of radioactive waste management for utilization of MOX fuel: thermal impact of Minor Actinide separation with geological disposal of high-level waste, J. Nucl. Sci. Technol. 58, 1123–1133 (2021) [CrossRef] [Google Scholar]
  2. T. Okamura, K. Kawai, E. Minari, M. Nakase, H. Asano, K. Takeshita, Effect of Cs and Sr separation on waste occupied area reduction in current nuclear energy system and its evaluation by CAERA index, Separat. Sci. Technol. 54, 1970–1076 (2019) [CrossRef] [Google Scholar]
  3. International Atomic Energy Agency, Framework for Assessing Dynamic Nuclear Energy Systems for Sustainability: Final Report of the INPRO Collaborative Project GAINS, IAEA Nuclear Energy Series No. NP-T-1.14, 2013 [Google Scholar]
  4. B. Feng, B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N.R. Brown, J. Powers, A. Worrall, S. Passerini, R. Gregg, Standardized verification of fuel cycle modeling, Ann. Nucl. Energy 94, 300–312 (2016) [CrossRef] [Google Scholar]
  5. Nuclear Energy Agency, in Benchmark study on nuclear fuel cycle transition scenarios analysis codes, NEA/NSC/WPFC/DOC (2012) vol. 16 [Google Scholar]
  6. I. Merino Rodríguez, A. Hernandez-Solís, N. Messaoudi, G. Van den Eynde, The nuclear fuel cycle code ANICCA: verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation, Nucl. Eng. Technol. 52, 2274–2284 (2020) [CrossRef] [Google Scholar]
  7. A. Ohtaki, K. Ono, Y. Sato, Function enhancement of nuclear fuel cycle dynamics analysis code: FAMILY-21, in Atomic Energy Society of Japan 2010 Autumn Meeting, Sapporo, Hokkaido, Japan (2010) [Google Scholar]
  8. K. Nishihara, H. Akie, N. Shirasu, T. Iwamura, Utilization of rock-like oxide fuel in the phase-out scenario, J. Nucl. Sci. Technol. 51, 150–165 (2014) [CrossRef] [Google Scholar]
  9. S.B. Ludwig, et al., Revision to ORIGEN2-Version 2.2, Transmittal memo of CCC-371/17 (2002) [Google Scholar]
  10. COMSOL, COMSOL Multiphysics® 5.6, heat transfer module (COMSOL AB, 2021) [Google Scholar]
  11. C. Coquelet-Pascal, M. Tiphine, G. Krivtchik, D. Freynet, C. Cany, R. Eschbach, C. Chabert, COSI6: a tool for nuclear transition scenario studies and application to SFR deployment scenarios with minor actinide transmutation, Nucl. Technol. 192, 91–110 (2015) [CrossRef] [Google Scholar]
  12. J.-M. Vidal, R. Eschbach, A. Launay, C. Binet, J.-F. Thro, CESAR5.3: an industrial tool for nuclear fuel and waste characterization with associated qualification, in Proceeding of WM 2012 Conference, Phoenix, Arizona, USA (2012) [Google Scholar]
  13. G. Krivtchik, COSI7: the new CEA reference electro-nuclear simulation tool, EPJ Web Conf. 247, 13001 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  14. I. Merino-Rodríguez, M. García-Martínez, F. Álvarez-Velarde, D. López, Cross check of the new economic and mass balance features of the fuel cycle scenario code TR_EVOL, EPJ Nuclear Sci. Technol. 2, 33 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  15. F. Álvarez-Velarde, E.M. González-Romero, I. Merino Rodríguez, Validation of the burn-up code EVOLCODE 2.0 with PWR experimental data and with a Sensitivity/Uncertainty analysis, Ann. Nucl. Energy 73, 175–188 (2014) [CrossRef] [Google Scholar]
  16. J.J. Jacobson, R.F. Jeffers, G.E. Matthern, S.J. Piet, B.A. Baker, VISION User Guide VISION (Verifiable Fuel Cycle Simulation) Model, INL/EXT-09-16645 (2009) [CrossRef] [Google Scholar]
  17. J.J. Jacobson, A.M. Yacout, G.E. Matthern, S.J. Piet, D.E. Shropshire, R.F. Jeffers, T. Schweitze, Verifiable Fuel Cycle Simulation Model (VISION): a tool for analyzing nuclear fuel cycle futures, Nucl. Technol. 172, 157–178 (2017) [Google Scholar]
  18. T. Okamura, A. Oizumi, K. Nishihara, M. Nakase, K. Takeshita, Selection of Nuclides for Mass-balance Analysis of Fission Products, JAEA-Data/Code 2020–023, 2021 [Google Scholar]
  19. K. Okumura, K. Sugino, K. Kojima, T. Jin, T. Okamoto, J.-I. Katakura, A set of ORIGEN2 cross section libraries based on JENDL4.0: ORILIBJ40, JAEA-Data/Code 2012–032, 2013 [Google Scholar]
  20. J.-I. Katakura, JENDL FP Decay Data File 2011 and Fission Yields Data File 2011, JAEA-Data/Code 2011–025, 2012 [Google Scholar]
  21. K.H. Schmidt, Spontaneous fission product yields, GEFY7.2: GEF-based fission-fragment Yield library in ENDF format, 2019 [Google Scholar]
  22. T. Okamura, R. Katano, A. Oizumi, K. Nishihara, M. Nakase, H. Asano, K. Takeshita, Study on numerical cost reduced depletion calculation including short half-lived nuclides, J. Nucl. Sci. Technol. (submitted) [Google Scholar]
  23. Nuclear Waste Management Organization of Japan, NUMO Safety Case Report: Realization of Safe Geological Disposal of High-Level Radioactive Waste and TRU Waste in Japan − Development of a Safety Case for the Selection of an Appropriate Site, NUMO-TR-20-03, 2021 [Google Scholar]
  24. Japan Nuclear Cycle Development Institute, Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan; H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 2: Repository Design and Engineering Technology, JNC TN 1410 2000–003, 2000 [Google Scholar]
  25. H. Suzuki, S. Nakama, T. Fujita, H. Imai, M. Sazarashi, A long-term THMC assessment on the geochemical behavior of the bentonite buffer, J. Nucl. Fuel Cycle Environ. 19, 39–50 (2012) [CrossRef] [Google Scholar]
  26. W. Taniguchi, T. Fujita, Thermal analysis on the design research of geological disposal site, PNC TN 8410 97–212, 1997 [Google Scholar]
  27. M. Chijimatsu, W. Taniguchi, Coupled thermal hydraulic and mechanical analysis in the near field for geological disposal of high-level radioactive waste, JNC-TN 8400 99–014, 1999 [Google Scholar]
  28. GoldSim, GoldSim Version 12.1 and Radionuclide Transport Module, GoldSim Technology Group, LLC, 2020 [Google Scholar]
  29. Japan Nuclear Cycle Development Institute, Second progress report on research and development for the geological disposal of HLW in Japan. H12 project to establish the scientific and technical basis for HLW disposal in Japan, supporting report 3: safety assessment of the geological disposal system, JNC TN 1410 2000–004, 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.