Open Access
EPJ Nuclear Sci. Technol.
Volume 7, 2021
Article Number 14
Number of page(s) 24
Published online 24 August 2021
  1. J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in Proceedings of the PHYSOR-2006 conference, ANS Topical Meeting on Reactor Physics, Vancouver, BC, Canada, September 10-14, September 10-14 (2006), B144 [Google Scholar]
  2. E.L. Georgieva, J. Hykes, R.M. Ferrer, J. Rhodes, CASMO5 isotopic comparison to the ARIANE mixed-oxide pressurized water spent fuel measurements, in Proceedings of the PHYSOR 2018 conference: Reactor Physics paving the way towards more efficient systems, Cancun, Mexico, April 22-26, 2018 (2018) 1171 [Google Scholar]
  3. J. Li, D. Rochman, A. Vasiliev, H. Ferroukhi, J. Herrero, A. Pautz, M. Seidl, D. Janin, Bowing effects on isotopic concentrations for simplified PWR assemblies and full cores, Ann. Nucl. Energy 110, 1023 (2017) [CrossRef] [Google Scholar]
  4. T. Yamamoto, M. Suzuki, Y. Ando, H. Nagano, Validation of decay heat calculation results of ORIGEN2.2 and CASMO5 for light water reactor fuel, J. Nucl. Sci. Technol. 49, 910 (2012) [CrossRef] [Google Scholar]
  5. ARIANE International Programme Final Report. Belgonucléaire, AR2000/15 BN Ref. 0000253/221, Revision B, December (2000). [Google Scholar]
  6. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, Analysis for the ARIANE GU1 sample: nuclide inventory and decay heat, Ann. Nucl. Energy 160, 108359 (2021) [CrossRef] [Google Scholar]
  7. European Joint Programme on Radioactive Waste Management. EU H2020-Euratom-1.2 program, Grant agreement ID: 847593. [Google Scholar]
  8. G. Radulescu, I.C. Gauld, G. Ilas, SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions. Oak Ridge National Laboratory Report, ORNL/TM-2010/44 (2010) [Google Scholar]
  9. H. Ferroukhi, K. Hofer, J.M. Hollard, A. Vasiliev, M.A. Zimmermann, Core Modelling and Analysis of the Swiss Nuclear Power Plants for Qualified R&D Applications, in Proceedings of the Int. Conf. on the Physics of Reactors, PHYSOR’08, Interlaken, Switzerland (2008) [Google Scholar]
  10. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Pecchia, Consistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2M approach, J. Hazard. Mater. 357, 384 (2018) [Google Scholar]
  11. D. Rochman, A. Dokhane, A. Vasiliev, H. Ferroukhi, M. Hursin, Nuclear data uncertainties for Swiss BWR spent nuclear fuel characteristics, Eur. Phys. Jour. Plus 135, 233 (2020) [CrossRef] [Google Scholar]
  12. O. Leray, D. Rochman, P. Grimm, H. Ferroukhi, A. Vasiliev, M. Hursin, G. Perret, A. Pautz, Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94, 603 (2016) [CrossRef] [Google Scholar]
  13. D.A. Brown et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  14. A.J.M. Plompen et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  15. K. Shibata et al., JENDL-4.0: a new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48, 1 (2011) [Google Scholar]
  16. O. Leray, P. Grimm, M. Hursin, Ferroukhi, A. A. Pautz, Uncertainty Quantification of Spent Fuel Nuclide Compositions due to Cross-Sections, Decay Constants and Fission Yields”, PHYSOR 2014 - The Role of Reactor Physics Toward a Sustainable Future, The Westin Miyako, Kyoto, Japan, September 28 - October 3, 2014, on CD-ROM (2014). [Google Scholar]
  17. D. Siefman, M. Hursin, H. Sjostrand, G. Schnabel, D. Rochman, A. Pautz, Data assimilation of post-irradiation examination data for fission yields from GEF, Eur. Phys. J. N 6, 52 (2020) [Google Scholar]
  18. S. Azzaoui, SCALE-6 fuel depletion analyses: Application to the ARIANE program, Master Thesis, SCK-CEN, Belgium, 2010 [Google Scholar]
  19. ASTM Standard C1769 - 15, Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup. ASTM International, West Conshohocken, PA (2003). [Google Scholar]
  20. P. de Regge, R. Boden, Determination of Neodymium isotopes as burnup indicator of highly enriched (U, Pu)O2 LMFBR fuel, J. Radiol. Chem. 35, 173 (1977) [CrossRef] [Google Scholar]
  21. M.W Francis, C.F. Weber, M.T. Pigni, I.C. Gauld, Reactor fuel isotopics and code validation for nuclear applications, Oak Ridge National Laboratory Report ORNL/TM-2014/464 (September 2014) [Google Scholar]
  22. R.W. Mills, C.H. Zimmerman, R.G. Moore, Uncertainties on spent fuel inventories in the application of nuclear fuel cycles, in Proceedings of the CANDIDE workshop, Nuclear data needs for Generation-IV and accelerator driven systems, 16-18 October 2007 (2007) 131 [Google Scholar]
  23. R. Ichou, B. Dechenaux, On the validation of VESTA 2.2.0 using the ARIANE-GU3 sample, in Proceedings of the conference PHYSOR 2020: Transition to a Scalable Nuclear Future, Cambridge, United Kingdom, March 29-April 2, 2020 (2020) [Google Scholar]
  24. O. Leray, H. Ferroukhi, M. Hursin, A. Vasiliev, D. Rochman, Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles, Ann. Nucl. Energy 110, 547 (2017) [CrossRef] [Google Scholar]
  25. D. Rochman, A. Dokhane, A. Vasiliev, H. Ferroukhi, M. Hursin, Nuclear data uncertainties for core parameters based on Swiss BWR operated cycles, Ann. Nucl. Energy 148, 107727 (2020) [CrossRef] [Google Scholar]
  26. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Seidl, J. Basualdo, Improvement of PIE analysis with a full core simulation: The U1 case, Ann. Nucl. Energy 148, 107706 (2020) [CrossRef] [Google Scholar]
  27. B. Ebiwonjumi, C. Kong, P. Zhang, A. Cherezov, D. Lee, Uncertainty quantification of PWR spent fuel due to nuclear data and modeling parameters, Nucl. Eng. Technol. (2020) in press [Google Scholar]
  28. A. Rintala, Evaluating the effect of decay and fission yield data uncertainty on BWR spent nuclear fuel source term, in Proceedings of the International Conference Nuclear Energy for New Europe, Portoroz, Slovenia, September 7–10, 2020 (2020) [Google Scholar]
  29. G. Ilas, H. Liljenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319, 176 (2017) [CrossRef] [Google Scholar]
  30. I.C. Gauld, G. Ilas, G. Radulescu, Uncertainties in predicted isotopic compositions for high burnup PWR spent nuclear fuel, Oak Ridge National Laboratory Report ORNL/TM-2010/41, NUREG/CR-7012, January 2011 [Google Scholar]
  31. S.D. Phillips, K.R. Eberhardt, B. Parry, Guidelines for expressing the uncertainty of measurement results containing uncorrected bias, J. Res. Natl. Inst. Stand. Technol. 102, 577 (1997) [CrossRef] [Google Scholar]
  32. Guide to the Expression of Uncertainty in Measurement. JCGM 100: 2008, International Organization for Standardisation. Geneva, Switzerland. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.