Issue
EPJ Nuclear Sci. Technol.
Volume 7, 2021
A tribute to Massimo Salvatores' scientific work
Article Number 13
Number of page(s) 15
DOI https://doi.org/10.1051/epjn/2021012
Published online 16 August 2021
  1. M. Aufiero, M. Fratoni, G. Palmiotti, M. Salvatores, Continuous energy cross section adjustment: a new method to generalize nuclear data assimilation for a wider range of applications, in Proceedings, M&C 2017 − International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16-20, 2017, 2017 [Google Scholar]
  2. M. Aufiero, M. Martin, M. Fratoni, XGPT: Extending Monte Carlo generalized perturbation theory capabilities to continuous-energy sensitivity functions, Ann. Nucl Energy 96, 295–306 (2016) [Google Scholar]
  3. M. Aufiero, G. Palmiotti, M. Salvatores, S. Sen, Coupled reactors analysis: New needs and advances using Monte Carlo methodology, Ann. Nucl Energy 98, 218–225 (2016) [Google Scholar]
  4. P. Archier et al., Conrad evaluation code: Development status and perspectives, Nucl. Data Sheets 118, 488–490 (2014) [Google Scholar]
  5. C. De Saint Jean, P. Tamagno, P. Archier, G. Noguere, CONRAD – a code for nuclear data modeling and evaluation, EPJ Nuclear Sci. Technol. 7, 10 (2021) [EDP Sciences] [Google Scholar]
  6. E. Brun et al., TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151–160 (2015) [CrossRef] [Google Scholar]
  7. A.M. Lane, R.G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257–353 (1958) [Google Scholar]
  8. B. Morillon, P. Romain, Dispersive and global spherical optical model with a local energy approximation for the scattering of neutrons by nuclei from 1 keV to 200 MeV, Phys. Rev. C 70, 014601 (2004) [Google Scholar]
  9. D. Rochman, A. Koning, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113, 2841–2934 (2012) [Google Scholar]
  10. C. Mattoon et al., Generalized Nuclear Data: A new structure (with supporting infrastructure) for handling nuclear data, Nucl. Data Sheets 113, 3145–3171 (2012) [Google Scholar]
  11. D.A. Brown et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1–142 (2018) [Google Scholar]
  12. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Computing adjoint-weighted kinetics parameters in TRIPOLI-4® by the Iterated Fission Probability method, Ann. Nucl. Energy 85, 17–26 (2015) [Google Scholar]
  13. Y. Nauchi, T. Kameyama, Development of calculation technique for Iterated Fission Probability and reactor kinetic parameters using continuous-energy Monte Carlo method, J. Nucl. Sci. Technol. 47, 977–990 (2010) [Google Scholar]
  14. P. Tamagno, E. Vandermeersch, Comprehensive stochastic sensitivities to resonance parameters, in Proceedings, 2019 International Conference On Nuclear Data for Science and Technology, Beijing, China (2019) [Google Scholar]
  15. G. Palmiotti, M. Salvatores, G. Aliberti, Methods in use for sensitivity analysis, uncertainty evaluation and target accuracy assessment, in Proceedings, NEMEA-4–Neutron Measurements, Evaluation and Applications, Prague, Czech Republic (2007) [Google Scholar]
  16. B.C. Kiedrowski, Review of Early 21st-Century Monte Carlo Perturbation and Sensitivity Techniques for k-Eigenvalue Radiation Transport Calculations, Nucl. Sci. Eng. 185, 426–444 (2017) [Google Scholar]
  17. M. Aufiero, A. Bidaud, M. Fratoni, Continuous energy function sensitivity calculation using GPT in Monte Carlo neutron transport: application to resonance parameters sensitivity study, in Proceedings, International Congress on Advances in Nuclear Power Plants (ICAPP), San Francisco, United States (2016) [Google Scholar]
  18. OECD-NEA, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95°/03, OECD/NEA, Paris, France (2018) [Google Scholar]
  19. A.J.M. Plompen et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  20. M. Maillot, Caractérisation des effets spatiaux dans les grands cœurs RNR : méthodes, outils et études“ ( in French), PhD Thesis, Aix Marseille Université, ED 352 ( 2016) [Google Scholar]
  21. M. Maillot, J. Tommasi, G. Rimpault, A search for theories enabling analyses of spatial effects in highly coupled SFR cores, Proceedings, Physics of Reactors 2016, PHYSOR 2016: Unifying Theory and Experiments in the 21st Century, Sun Valley, ID, USA (2016) [Google Scholar]
  22. K. Kobayashi, Rigorous derivation of multi-point kinetic equations with explicit dependence on perturbation, J. Nucl. Sci. Technol. 29, 110–120 (1992) [Google Scholar]
  23. C. Venard, The ASTRID core at the midterm of the conceptual design phase (AVP2), in Proceedings, ICAPP 2015: Unifying Theory and Experiments in the 21st Century, Sun Valley, ID, USA, paper 15275, May 03-06, 2015, Nice, France (2015) [Google Scholar]
  24. R. Le Tellier, C. Suteau, D. Fournier, J.M. Ruggieri, High-order discrete ordinate transport in hexagonal geometry: a new capability in ERANOS, Nuovo Cimento C 33, 121 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.