Issue
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Euratom Research and Training in 2019: the Awards collection
Article Number 6
Number of page(s) 7
DOI https://doi.org/10.1051/epjn/2019057
Published online 07 February 2020
  1. S.K. Kang, Y.A. Hassan, Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle, Nucl. Eng. Des. 301, 204 (2016) [CrossRef] [Google Scholar]
  2. U. Bieder, F. Falk, G. Fauchet, LES analysis of the flow in a simplified PWR assembly with mixing grid, Prog. Nucl. Energy 75, 15 (2014) [CrossRef] [Google Scholar]
  3. Y. Fen Shen, Z. Dong Cao, Q. Gang Lu, An investigation of crossflow mixing effect caused by grid spacer with mixing blades in a rod bundle, Nucl. Eng. Des. 125, 111 (1991) [CrossRef] [Google Scholar]
  4. M.J. Schmeits, H.A. Dijkstra, Bimodal behavior of the Kuroshio and the Gulf Stream, J. Phys. Oceanogr. 31, 3435 (2001) [CrossRef] [Google Scholar]
  5. TrioCFD: http://www-trio-u.cea.fr/ [Google Scholar]
  6. P.-E. Angeli, M.-A. Puscas, G. Fauchet, A. Cartalade, FVCA8 Benchmark for the Stokes and Navier-Stokes Equations with the TrioCFD Code—Benchmark Session, in Finite Volumes for Complex Applications VIII − Methods and Theoretical Aspects , edited by C. Cancès, P. Omnes (Springer International Publishing, Cham, 2017), p. 181 [CrossRef] [Google Scholar]
  7. C.W. Higgins, M. Froidevaux, V. Simeonov, N. Vercauteren, C. Barry, M.B. Parlange, The effect of scale on the applicability of Taylor's frozen turbulence hypothesis in the atmospheric boundary layer, Boundary Layer Meteorol. 143 , 379 (2012) [CrossRef] [Google Scholar]
  8. J. Miller, Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 2137 (1990) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. R. Robert, J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech. 229, 291 (1991) [CrossRef] [MathSciNet] [Google Scholar]
  10. F.P. Bretherton, D.B. Haidvogel, Two-dimensional turbulence above topography, J. Fluid Mech. 78 , 129 (1976) [CrossRef] [Google Scholar]
  11. A. Naso, P.H. Chavanis, B. Dubrulle, Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states, Eur. Phys. J. B 77, 187 (2010) [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. F. Muller, A. Burbeau, B.-J. Gréa, P. Sagaut, Minimum enstrophy principle for two-dimensional inviscid flows around obstacles, Phys. Rev. E 99 , 023105 (2019) [CrossRef] [Google Scholar]
  13. P.H. Chavanis, J. Sommeria, Classification of self-organized vortices in two-dimensional turbulence: the case of a bounded domain, J. Fluid Mech. 314, 267 (1996) [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.