EPJ Nuclear Sci. Technol.
Volume 6, 2020
Euratom Research and Training in 2019: challenges, achievements and future perspectives
Article Number 42
Number of page(s) 14
Section Part 1: Safety research and training of reactor systems
Published online 05 May 2020
  1. C. Demazière et al., Overview of the CORTEX project, in Proceedings of the International Conference on the Physics of Reactors – Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22–26, 2018 [Google Scholar]
  2. V. Sanchez et al., High performance Monte Carlo computing projects: from HPCM to McSAFE, in NUGENIA Forum, Ljubljana, Slovenia, April 14, 2015 [Google Scholar]
  3. L. Mercatali et al., McSAFE projects highlights, in International Multi Physics Validation Workshop, North Carolina State University, USA, June 2017 [Google Scholar]
  4. E. Deville, F. Perdu, Documentation of the Interface for Code Coupling: ICOCO, CEA, Paris, 2012 [Google Scholar]
  5. B. Chanaron et al., Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE Project, Ann. Nucl. Energy 84, 166 (2015) [CrossRef] [Google Scholar]
  6. B. Chanaron, The European NURESAFE simulation project for reactor safety, in Proceedings of the Internationl Conferencre on the Nuclear Engineering (ICONE22), Prague, Czech Republic, July 7–11, 2014 [Google Scholar]
  7. C. Demazière, Multi-physics modelling of nuclear reactors: current practices in a nutshell, Int. J. Nucl. Energy Sci. Technol. 7 , 288 (2013) [CrossRef] [Google Scholar]
  8. I. Lux, L. Koblinger, Monte Carlo particle transport methods: neutron and photons calculations (CRC Press, Boca Raton, FL, 1991) [Google Scholar]
  9. A. Ivanov et al., Internal multi-scale multi-physics coupled system for high fidelity simulation of light water reactors, Ann. Nucl. Energy 66, 104 (2014) [CrossRef] [Google Scholar]
  10. M. Däubler et al., High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW − Part I: Implementation and solution verification, Ann. Nucl. Energy 83, 352 (2015) [CrossRef] [Google Scholar]
  11. F. Calivà, et al., A deep learning approach to anomaly detection in nuclear reactors, in Proceedings of the 2018 International Joint Conference on the Neural Networks (IJCNN2018), Rio de Janeiro, Brazil, July 8–13, 2018 [Google Scholar]
  12. F. De Sousa Ribeiro et al., Towards a deep unified framework for nuclear reactor perturbation analysis, in Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI 2018), Bengaluru, India, November 18-21, 2018 [Google Scholar]
  13. J. Dufek, J.E. Hoogenboom, Description of a stable scheme for steady-state coupled Monte Carlo-thermal-hydraulic calculations, Ann. Nucl. Energy 68 , 1 (2014) [CrossRef] [Google Scholar]
  14. J.E. Hoogenboom, Demonstration of the time-dependence after a control rod movement, HPCM Deliverable D3.10 (2013) [Google Scholar]
  15. J.E. Hoogenboom et al., Maximum efficiency in massively parallel execution of Monte Carlo criticality calculations, in Proceedings of the Joint International Conference on the Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method (MC2015), Nashville, USA, April 19–23, 2015 [Google Scholar]
  16. I. Mickus, J. Dufek, Optimal neutron population growth in accelerated Monte Carlo criticality calculations, Ann. Nucl. Energy 117 , 297 (2018) [CrossRef] [Google Scholar]
  17. M. Garcia et al., Development of a spatial domain decomposition scheme for Monte Carlo neutron transport, in Proceedings of the International Conference on Nuclear Engineering (ICONE26), London, United Kindgom, July 22–26, 2018 [Google Scholar]
  18. D. Ferraro et al., Foreseen capabilities, bottlenecks identification and potential limitations of Serpent MC transport code in large-scale full 3D burnup calculations, in Proceedings of the International Conference on Nuclear Engineering (ICONE26), London, United Kindgom, July 22–26, 2018 [Google Scholar]
  19. M. Faucher et al., New kinetic simulation capabilities for TRIPOLI-4®: methods and applications, Ann. Nucl. Energy 120, 74 (2018) [CrossRef] [Google Scholar]
  20. A. Livensky et al., Modeling the SPERT transients using Serpent2 with time-dependent capabilities, Ann. Nucl. Energy 125, 80 (2019) [CrossRef] [Google Scholar]
  21. S. Sanchez-Cervera et al., Optimization of multidimensional cross-section tables for few-group core calculations, Ann. Nucl. Energy 73, 387 (2014) [CrossRef] [Google Scholar]
  22. S. Lal et al., Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling, Int. J. Heat Fluid Flow 51, 16 (2015) [CrossRef] [Google Scholar]
  23. Y. Sato et al., Computational fluid dynamics simulation of single bubble dynamics in convective boiling flows, Multiphase Sci. Technol. 25, 287 (2013) [CrossRef] [Google Scholar]
  24. H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the Eulerian- Lagrangian approach. Ann. Nucl. Energy 77, 415 (2015) [CrossRef] [Google Scholar]
  25. Bundesamt für Strahlenschutz, Kurzbeschreibung und Bewertung der meldepflichtigen Ereignisse in Kernkraftwerken und Forschungsreaktoren der Bundesrepublik Deutschland im Zeitraum Januar 2011, Stand 14.12.2012 (2012) (in German) [Google Scholar]
  26. Almaraz Trillo Report, Neutron noise status in Trillo NPP, Technical report CO-12/043, Spain, 2012 [Google Scholar]
  27. CSN/PDT/NCTRI/TRI/1503/203, Proposal of technical decision on the revision of the Technical Operational Specifications relative to the dead band of the filter in Trillo NPP, technical report (in Spanish) [Google Scholar]
  28. M. Seidl et al., Review of the historic neutron noise behaviour in German KWU built PWRs, Prog. Nucl. Energy 85, 668 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.