EPJ Nuclear Sci. Technol.
Volume 5, 2019
Euratom Research and Training in 2019: the Awards collection
Article Number 20
Number of page(s) 9
Published online 29 November 2019
  1. C. Demazière et al., Overview of the CORTEX project, in Proc. Int. Conf. Physics of Reactors − Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018) [Google Scholar]
  2. D. Rolnick et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433 (2019) [Google Scholar]
  3. F.C. Chen, M.R. Jahanshahi, NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion, IEEE Trans. Ind. Electron 65, 4392 (2017) [CrossRef] [Google Scholar]
  4. W. Li et al., Design of comprehensive diagnosis system in nuclear power plant, Ann. Nucl. Energy 109, 92 (2017) [CrossRef] [Google Scholar]
  5. M.C. dos Santos et al., Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant, Ann. Nucl. Energy 133, 400 (2019) [CrossRef] [Google Scholar]
  6. R.M. Ayo-Imoru, A.C. Cilliers, Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant, Ann. Nucl. Energy 118, 61 (2018) [CrossRef] [Google Scholar]
  7. S. Zaferanlouei et al., Prediction of critical heat flux using anfis, Ann. Nucl. Energy 37, 813 (2010) [CrossRef] [Google Scholar]
  8. S.A. Hosseini, I.E.P. Afrakoti, Neutron noise source reconstruction using the adaptive neuro-fuzzy inference system (anfis) in the vver-1000 reactor core, Ann. Nucl. Energy 105, 36 (2017) [CrossRef] [Google Scholar]
  9. S.A. Hosseini, I.E.P. Afrakoti, Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS), J. Radiat. Res. 59, 436 (2018) [CrossRef] [Google Scholar]
  10. F. Calivà et al., A deep learning approach to anomaly detection in nuclear reactors, in Proc. 2018 Int. Joint Conf. Neural Networks (IJCNN2018), Rio de Janeiro, Brazil, July 8-13, 2018 (2018) [Google Scholar]
  11. F. De Sousa Ribeiro et al., Towards a deep unified framework for nuclear reactor perturbation analysis, in Proc. IEEE Symposium Series on Computational Intelligence (SSCI 2018), Bengaluru, India, November 18–21 (2018) [Google Scholar]
  12. C. Demazière, Core sim: a multi-purpose neutronic tool for research and education, Ann. Nucl. Energy 38, 2698 (2011) [CrossRef] [Google Scholar]
  13. C. Demazière, User's manual of the core sim neutronic tool, Technical report, Chalmers University of Technology, 2011 [Google Scholar]
  14. G. Grandi et al., Simulate-3k models and methodology, SSP-98013, 6 (2006) [Google Scholar]
  15. Y. LeCun et al., Generalization and network design strategies, Connectionism in perspective (1989), p. 143 [Google Scholar]
  16. G. Huang et al., Densely connected convolutional networks, in Proc. IEEE Conf. on computer vision & pattern recognition, Honolulu, Hawaii, USA, July 22-26, 2017 (2017) [Google Scholar]
  17. M. Lin et al., Network in Network, arXiv:1312.4400 (2013) [Google Scholar]
  18. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9, 1735 (1997) [CrossRef] [PubMed] [Google Scholar]
  19. N. Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15, 1929 (2014) [Google Scholar]
  20. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.