Open Access
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 7
Number of page(s) 9
Published online 15 May 2019
  1. G.S. Was, Challenges to the use of ion irradiation for emulating reactor irradiation, J. Mater. Res. 30, 1158 (2015) [CrossRef] [Google Scholar]
  2. S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations, Scripta Mater. 143, 154 (2018) [CrossRef] [Google Scholar]
  3. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM − The stopping and range of ions in matter (Ion Implantation Press, 2008) [Google Scholar]
  4. M. Robinson, The energy dependence of neutron radiation damage in solids, Nucl. Fusion React. 1, 364 (1970) [Google Scholar]
  5. M.T. Robinson, I.M. Torrens, Computer simulation of atomic displacement cascades in solids in the binary-collision approximation, Phys. Rev. B 9, 5008 (1974) [CrossRef] [Google Scholar]
  6. R. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver, Phys. Rev. B 18, 4156 (1978) [CrossRef] [Google Scholar]
  7. M.W. Guinan, J.H. Kinney, Molecular dynamic calculations of energetic displacement cascades, J. Nucl. Mater. 104, 1319 (1981) [CrossRef] [Google Scholar]
  8. L.E. Rehn, P.R. Okamoto, Production of freely-migrating defects during irradiation, Mater. Sci. Forum 15–18, 985 (1987) [CrossRef] [Google Scholar]
  9. L. Luneville, D. Simeone, D. Gosset, A new tool to compare neutron and ion irradiation in materials, Nucl. Instrum. Methods Phys. Res. Sect. B 250, 71 (2006) [CrossRef] [Google Scholar]
  10. J.F. Ziegler, SRIM, [Google Scholar]
  11. C. Borschel, C. Ronning, Ion beam irradiation of nanostructures − A 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2133 (2011) [CrossRef] [Google Scholar]
  12. F. Schiettekatte, Fast Monte Carlo for ion beam analysis simulations, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 1880 (2008) [CrossRef] [Google Scholar]
  13. D. Schwen, MyTrim, [Google Scholar]
  14. W. Eckstein, et al. SDTrimSP version 5.00, MaxPlanck- Institut für Plasmaphysik, Report 12/08 [Google Scholar]
  15. Y.G. Li, et al., IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry, Sci. Rep. 5, 18130 (2015) [CrossRef] [Google Scholar]
  16. C.J. Ortiz, A combined BCA-MD method with adaptive volume to simulate high-energy atomic-collision cascades in solids under irradiation, Comput. Mater. Sci. 154, 325 (2018) [CrossRef] [Google Scholar]
  17. M. Norgett, M.T. Robinson, I. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Design 33, 50 (1975) [CrossRef] [Google Scholar]
  18. M. Robinson, The energy dependence of neutron radiation damage in solids, Nuclear Fusion Reactor Conference (Culham Laboratory, 1969) [Google Scholar]
  19. J.B. Gibson, et al., Dynam. Radiat. Damage Phys. Rev. 120, 1229 (1960) [Google Scholar]
  20. J. Lindhard, M. Scharff, H.E. Schiott, Kgl. Dan. Vidensk. Selsk. Mat. −fys. Medd 33, 14 (1963) [Google Scholar]
  21. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, in SRIM − The stopping and range of ions in matter (Ion Implantation Press, 2008), pp. 7–16 [Google Scholar]
  22. C. Borschel, et al., Iradina, [Google Scholar]
  23. C. Van Wambeke, J.P. Crocombette, Iradina_CEA, [Google Scholar]
  24. E. Brun, et al., Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  25. R.E. Macfarlane, D.W. Muir, F.M. Mann, Radiation damage calculations with njoy, J. Nucl. Mater. 123, 1041 (1984) [CrossRef] [Google Scholar]
  26. R.E. Stoller, The role of cascade energy and temperature in primary defect formation in iron, J. Nucl. Mater. 276, 22 (2000) [CrossRef] [Google Scholar]
  27. R.E. Stoller, et al., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013) [CrossRef] [Google Scholar]
  28. K. Nordlund, et al., Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9, 8 (2018) [CrossRef] [PubMed] [Google Scholar]
  29. C.S. Becquart, A. Souidi, M. Hou, Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron, Phys. Rev. B 66, 134104 (2002) [CrossRef] [Google Scholar]
  30. E. Zarkadoula, et al., Electronic effects in high-energy radiation damage in iron, J. Phys.: Condens. Matter 26, 085401 (2014) [CrossRef] [Google Scholar]
  31. W. Setyawan, et al., Displacement cascades and defects annealing in tungsten, Part I Defect Database Mol. Dynam. Simulat. 462, 329 (2015) [Google Scholar]
  32. J.P. Crocombette, et al., Molecular dynamics simulations of high energy cascade in ordered alloys: defect production and subcascade division, J. Nucl. Mater. 474, 134 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.