Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, January 2019
Article Number 8
Number of page(s) 10
DOI https://doi.org/10.1051/epjn/2019002
Published online 29 July 2019
  1. M. Nutt, Spent fuel, Argonne National Laboratory, April 2011 [Google Scholar]
  2. L. San Felice, R. Eschbach, P. Bourdot, Experimental validation of the DARWIN2.3 package for fuel cycle applications, Nuclear Technol. 184 , 217 (2013) [CrossRef] [Google Scholar]
  3. J.-M. Vidal, CES AR5. 3: An industrial tool for nuclear fuel and waste characterization with associated qualification, in Proc. Int. Conf. WM , Phoenix, Arizona, USA , 2012 [Google Scholar]
  4. R. Sanchez et al., APOLLO2 Year 2010, Nucl. Eng. Tech. 42 , 474 (2010) [CrossRef] [Google Scholar]
  5. A. Tsilanizara et al., DARWIN: an evolution code system for a large range of applications, J. Nuclear Sci. Technol. 1 , 845 (2000) [CrossRef] [Google Scholar]
  6. A. Santamarina et al. The JEFF-3.1.1 nuclear data library, JEFF Report 22, NEA No. 6807, OECD, 2009 [Google Scholar]
  7. A. Santamarina, N. Hfaiedh, The SHEM energy mesh for accurate fuel depletion and BUC calculations, in Proc. Int. Conf. Nuclear Criticality-Safety ICNC2007 , St Petersburg , 2007 [Google Scholar]
  8. J. Taïeb et al., APOLLO2: test of recently implemented methods applied to the calculation of a large scale heterogeneous cluster, in Proc. Int. Conf. PHYSOR 2002, Seoul, Korea, 2002 [Google Scholar]
  9. J.-F. Vidal et al., New modeling of LWR assemblies using the APOLLO2 code package, in Proc. Joint Int. Topl. Mtg. Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, USA, 2007 [Google Scholar]
  10. Predictive science academic alliance – Program-II (PSAAP-II) – Verification, Validation, and Uncertainty Quantification – Whitepaper (U), LLNL-MI-481471, Lawrence Livermore National Laboratory, Livermore, USA, 2011 [Google Scholar]
  11. W. Oberkampf, Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev. 57 , 345 (2004) [CrossRef] [Google Scholar]
  12. M. Avramova, K. Ivanov, Verification, validation and uncertainty quatification in multi-physics modeling for nuclear reactor design and safety analysis, Prog. Nuclear Energy 52 , 602 (2010) [CrossRef] [Google Scholar]
  13. C. De Saint Jean et al., Verification, validation and uncertainty quantification for neutronic calculation for ASTRID fast reactor detailed design, in Proc. Int. Conf. PHYSOR 2016 Sun Valley, Idaho, USA, 2016 [Google Scholar]
  14. E. Brun, E. Dumonteil, F. Malvagi, Systematic uncertainty due to statistics in Monte Carlo burnup codes: applications to a simple benchmark with TRIPOLI-4-D, Prog. Nuclear Sci. Technol. 2 , 879 (2011) [CrossRef] [Google Scholar]
  15. S. Lahaye et al., First verification and validation steps of MENDEL release V1.0 cycle code system, in Proc. Int. Conf. PHYSOR2014, Kyoto, Japan, 2014 [Google Scholar]
  16. A. Rizzo, C. Vaglio-Gaudard, J. Fiona-Martin, G. Noguère, R. Eschbach, Work plan for improving the DARWIN2.3 depleted material balance calculation concerning some important isotopes for fuel cycle, in Proc. Int. Conf. Nuclear Data for Science and Technology (ND 2016), Bruges, Belgium, 2016 [Google Scholar]
  17. V. Vallet, Validation of the uncertainty propagation method for the decay heat within the DARWIN2.3 package, in Proc. ANS Best Estimate Plus Uncertainty Int. Conf. (BEPU 2018), Lucca, Italy, 2018 [Google Scholar]
  18. S. Lahaye, Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse, EPJ Web Conf. 11 , 09002 (2016) [CrossRef] [Google Scholar]
  19. P. Archier et al., COMAC: Nuclear Data Covariance Matrices Library for Reactor Applications, in Proc. Int. Conf. PHYSOR 2014, Kyoto, Japan, 2014 [Google Scholar]
  20. F. Gaudier, URANIE: The CEA/DEN uncertainty and sensitivity platform, Procedia-Soc. Behavioral Sci. 2 , 7660 (2010) [CrossRef] [Google Scholar]
  21. V. Vallet, Validation of the uncertainty propagation method for the decay heat within the DARWIN2.3 package, in Proc. Int. Conf. Best Estimate Plus Uncertainty (BEPU 2018), Italy, 2018 [Google Scholar]
  22. V. Vallet, C. Vaglio-Gaudard, C. Carmouze, Application of the bias transposition method on PWR decay heat calculations with the DARWIN2.3 package, in Proc. Int. Conf. GLOBAL2017, Seoul, South Korea, 2017 [Google Scholar]
  23. R.W. Mills, Improved Fission product yield evaluation methodologies, WPEC Subgroup Proposal, OECD/NEA, May 2012 [Google Scholar]
  24. D. Rochman et al., A Bayesian Monte Carlo method for fission yield covariance information, Ann. Nuclear Energy 95 , 125 (2016) [CrossRef] [Google Scholar]
  25. N. Terranova, Covariance Evaluation for Nuclear Data of Interest to the Reactivity Loss Estimation of the Jules Horowitz Material Testing Reactor, PhD report, Bologna University, Italy, 2016 [Google Scholar]
  26. T.D. Huynh, JEFF3 et les calculs de puissance résiduelle, CEA-R-6224 Report, IAEA, 2009 (in French) [Google Scholar]
  27. International standard, Énergie nucléaire – Réacteurs à eau légère – Calcul de la puissance résiduelle des combustibles nucléaires, ISO: 1064 5: 1992 (in French) [Google Scholar]
  28. M. Akiyama et al., Measurements of Gamma-Ray Decay Heat of Fission Products for Fast Neutron Fission of 235U, 239Pu and 233U, J. Atom. Energ. Soc. Jpn. 24, 709 (1982) [CrossRef] [Google Scholar]
  29. M. Akiyama et al., Measurement of Fission-product Decay Heat for Fast Reactors, in Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerp, Belgium, 237, 1982 [Google Scholar]
  30. J.K. Dickens et al., Fission-product energy release for times following thermal-neutron Fission 239, 241 Pu between 2 and 14000 s, Nucl. Sci. Eng. 78 , 126 (1981) [CrossRef] [Google Scholar]
  31. J.K. Dickens et al., Fission-product energy release for times following thermal-neutron fission 235 U between 2 and 14000 s, Nucl. Sci. Eng. 74 , 106 (1980) [CrossRef] [Google Scholar]
  32. J.C. Jaboulay, S. Bourganel, Analysis of MERCI decay heat measurement for PWR UO2 fuel rod, Nuclear Technol. 177 , 73 (2012) [CrossRef] [Google Scholar]
  33. F. Sturek, L. Agrenius, Measurements of decay heat in spent nuclear fuel at the Swedish interim storage facility CLAB, Svensk Kärnbränslehantering AB, SKB Report R-05-62, December 2006 [Google Scholar]
  34. V.V. Orlov et al., Problems of Fast Reactor Physics related to breeding, At. Energy Rev. 18 , 4 (1980) [Google Scholar]
  35. N. Dos Santos, Optimisation de l'approche de représentativité et de transposition pour la conception neutronique de programmes expérimentaux dans les maquettes critiques, PhD report, Grenoble University, France, 2013 (in French) [Google Scholar]
  36. N. Dos Santos, P. Blaise, A. Santamarina, A global approach of the representativity concept, Application on a high-conversion light water reactor MOX lattice case, in Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuclear Science & Engineering, Sun Valley, Idaho, USA, 2013 [Google Scholar]
  37. C. Carmouze, The similarity/transposition theory to assess accurately MOX 15 × 15 used fuel inventory with DARWIN2.3, in Proc. Int. Conf. GLOBAL2017, Seoul, South Korea, 2017 [Google Scholar]
  38. J. Rebah, Incertitude sur la puissance résiduelle due aux incertitudes sur les données de produits de fission, PhD report, University Paris IX Orsay, France, 1996 [Google Scholar]
  39. I. Gauld et al., Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel, Oak Ridge National Laboratory, NUREG/CR-6972, ORNL/TM-2008/015, 2010 [Google Scholar]
  40. W. Haeck et al., Experimental Validation of Decay Heat Calculations with VESTA 2.1, in Proc. Int. Conf. PHYSOR 2014, Kyoto, Japan, 2014 [Google Scholar]
  41. B.F. Judson et al., In-plant test measurements for spent fuel storage at morris operation – Volume 3: Fuel bundle heat generation rates, General Electric, NEDF-24922-3, February 1982 [Google Scholar]
  42. F. Schmittroth, ORIGEN2 Calculations of PWR Spent Fuel Decay Heat Compared with Calorimeter Data, Hanford Engineering Development Laboratory, HEDL-TME-83-32 (UC-85), January 1984 [Google Scholar]
  43. M. Lott et al., Puissance residuelle totale emise par les produits de fission thermique de l'235U, J. Nucl. Energy 27 , 597 (1973) (in French) [CrossRef] [Google Scholar]
  44. H.V. Nguyen, Gamma-ray spectra and decay heat following 235U thermal neutron fission, PhD report, 1997 [Google Scholar]
  45. C. Fiche, F. Defreche, A.M. Monnier, Mesures calorimetriques de la puissance residuelle totale emise par les produits de fission thermique de 233 U et 239 Pu, Centre d'Études Nucleaires de Cadarache, SEN/022, 1976 (in French) [Google Scholar]
  46. P.-I. Johansson, Integral determination of the Beta and Gamma heat in thermal-neutron-induced Fission of 235U and 239Pu, and of the Gamma heat in fast Fission of 238U, in Proc. Int. Conf. Nuclear Data for Science and Technology, Mito, Japan, 1987 [Google Scholar]
  47. H.V. Nguyen et al., Decay heat measurements following neutron fission of 235 U and 239 Pu, in Proc. Int. Conf. Nuclear Data for Science and Technology, Trieste, Italy, 1997 [Google Scholar]
  48. Y. Kawamoto, G. Chiba, Feasibility of decay heat uncertainty reduction using nuclear data adjustment method with experimental data, J. Nuclear Sci. Technol. 54 , 213 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.