Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 2
Number of page(s) 26
DOI https://doi.org/10.1051/epjn/2018052
Published online 19 February 2019
  1. H. Boussier et al., The molten salt reactor in generation IV: overview and perspectives, in Proceedings of the Generation4 International Forum Symposium, San Diego, USA, 2012 [Google Scholar]
  2. M.E. Whatley et al., Engineering development of the MSBR fuel recycle, Nucl. Appl. Technol. 8 , 170 (1970) [CrossRef] [Google Scholar]
  3. A. Nuttin, D. Heuer et al., Potential of thorium molten salt reactors, Prog. Nucl. Energy 46 , 77 (2005) [CrossRef] [Google Scholar]
  4. L. Mathieu, D. Heuer et al., The thorium molten salt reactor: moving on from the MSBR, Prog. Nucl. Eng. 48 , 664 (2006) [CrossRef] [Google Scholar]
  5. L. Mathieu, D. Heuer, E. Merle-Lucotte et al., Possible configurations for the thorium molten salt reactor and advantages of the fast non-moderated version, Nucl. Sci. Eng. 161 , 78 (2009) [CrossRef] [Google Scholar]
  6. C.W. Forsberg et al., Liquid salt applications and molten salt reactors, Revue Générale du Nucléaire 4, 63 (2007) [CrossRef] [Google Scholar]
  7. E. Merle-Lucotte, D. Heuer et al., Introduction of the physics of molten salt reactor, in Materials Issues for Generation IV Systems, NATO Science for Peace and Security Series B (Springer, Berlin, 2008), pp. 501–521 [Google Scholar]
  8. E. Merle-Lucotte, D. Heuer et al., Minimizing the fissile inventory of the molten salt fast reactor, Proceedings of the Advances in Nuclear Fuel Management IV (ANFM 2009), Hilton Head Island, USA, 2009 [Google Scholar]
  9. E. Merle-Lucotte, D. Heuer et al., Optimizing the burning efficiency and the deployment capacities of the molten salt fast reactor, in Proceedings of the International Conference Global 2009–The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives, Paris, France, Paper 9149, 2009 [Google Scholar]
  10. GIF (Generation IV International Forum), Annual Report 2008, pp. 36–41. Available at http://www.gen-4.org/PDFs/GIF_2008_Annual_Report.pdf [Google Scholar]
  11. GIF (Generation IV International Forum), Annual Report 2009, pp. 52–58. Available at http://www.gen-4.org/PDFs/GIF-2009-Annual-Report.pdf [Google Scholar]
  12. GIF (Generation IV International Forum), Annual Report 2013, pp. 82–91. Available at https://www.gen-4.org/gif/jcms/c_64097/2013-gif-annual-report [Google Scholar]
  13. C. Renault et al., The molten salt reactor (MSR) in Generation IV: overview and perspectives, in Proceedings of the GIF Symposium 2009, Paris, France, 2009. Available at http://www.gen-4.org/GIF/About/documents/30-Session2- 8-Renault.pdf [Google Scholar]
  14. J. Serp et al., The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 , 308 (2014) [Google Scholar]
  15. M. Allibert, M. Aufiero, M. Brovchenko, S. Delpech, V. Ghetta, D. Heuer, A. Laureau, E. Merle-Lucotte, in Handbook of Generation IV Nuclear Reactors, edited by I. Pioro, Woodhead Publishing Series in Energy (Woodhead Publishing, Duxford, UK, 2015) [Google Scholar]
  16. D. Gérardin et al., Design evolutions of the molten salt fast reactor, in Proceedings of the Fast Reactors 2017 International Conference, Jekaterinburg, Russian Federation, 2017 [Google Scholar]
  17. V. Ignatiev, V. Afonichkin, O. Feynberg, A. Merzlyakov, A. Surenkov, V. Subbotin, et al., Molten salt reactor: new possibilities, problems and solutions, At. Energy 112 , 157 (2012) [CrossRef] [Google Scholar]
  18. S. Delpech, E. Merle-Lucotte, D. Heuer et al., Reactor physics and reprocessing scheme for innovative molten salt reactor system, J. Fluorine Chem. 130 , 11 (2009) [Google Scholar]
  19. M. Allibert, M. Aufiero, T. Auger, M. Brovchenko A. Cammi, S. Delpech, S. Dulla, O. Feynberg, D. Heuer, V. Ignatiev, J.L. Kloosterman, D. Lathouwers, A. Laureau, L. Luzzi, E. Merle-Lucotte, P. Ravetto, Evaluation of Irradiation Damage of Structural Materials for the MSFR, Deliverable D2.4, EVOL (Evaluation and Viability of Liquid fuel fast reactor system) European FP7 project, Contract number: 249696, 2014 [Google Scholar]
  20. S. Delpech, E. Merle-Lucotte, T. Augé, D. Heuer, MSFR: material issued and the effect of chemistry control, in Proceedings of the Generation IV International Forum Symposium, Paris, France, 2009 [Google Scholar]
  21. X. Doligez, D. Heuer, E. Merle-Lucotte et al., Numerical tools for molten salt reactors simulations, in Proceedings of the International Conference Global 2009–The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives, Paris, France, 2009 [Google Scholar]
  22. A. d'Angelo, Overview of the delayed neutron data activities and results monitored by the NEA/WPEC subgroup 6, Prog. Nucl. Energy 41 , 5 (2002) [CrossRef] [Google Scholar]
  23. M. Aufiero, M. Brovchenko, A. Cammi, I. Clifford, O. Geoffroy, D. Heuer, A. Laureau, M. Losa, L. Luzzi, E. Merle-Lucotte, M.E. Ricotti, H. Rouch, Calculating the effective delayed neutron fraction in the molten salt fast reactor: analytical, deterministic and Monte Carlo approaches, Ann. Nucl. Energy 65 , 78 (2014) [CrossRef] [Google Scholar]
  24. A. Laureau et al., Transient coupled calculations of the Molten Salt Fast Reactor using the transient fission matrix approach, Nucl. Eng. Des. 316 , 112 (2017) [CrossRef] [Google Scholar]
  25. A. Laureau, Développement de modèles neutroniques pour le couplage thermohydraulique du MSFR et le calcul de paramètres cinétiques effectifs, Ph.D. thesis, Grenoble Alpes University, France (in French), 2015 [Google Scholar]
  26. C. Fiorina, M. Aufiero, A. Cammi, F. Franceschini, J. Krepel, L. Luzzi, K. Mikityuk, M.E. Ricotti, Investigation of the MSFR core physics and fuel cycle characteristics, Prog. Nucl. Energy 68 , 153 (2013) [CrossRef] [Google Scholar]
  27. A. Laureau, P. Rubiolo, D. Heuer, E. Merle-Lucotte, M. Brovchenko, Coupled neutronics and thermal-hydraulics numerical simulations of the molten salt fast reactor (MSFR), in Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, Paris, France, October 27–31, 2013 [Google Scholar]
  28. H. Rouch, O. Geoffroy, P. Rubiolo, A. Laureau, B. Brovchenko, D. Heuer, E. Merle-Lucotte, Preliminary thermal-hydraulic core design of the molten salt fast reactor (MSFR), Ann. Nucl. Energy 64 , 449 (2014) [CrossRef] [Google Scholar]
  29. V. Ignatiev, O. Feynberg, A. Merzlyakov et al., Progress in development of MOSART concept with Th support, in Proceedings of ICAPP 2012, Paper 12394 Chicago, USA, 2012 [Google Scholar]
  30. HELIOS Methods, Studsvik Scandpower, 2003 [Google Scholar]
  31. X. Doligez, Influence du retraitement physico-chimique du sel combustible sur le comportement du MSFR et sur le dimensionnement de son unité de retraitement, Ph.D. thesis, Grenoble Institute of Technology (Grenoble INP), France, 2010 [Google Scholar]
  32. A. Nuttin, Potentialités du concept de réacteur à sels fondus pour une production durable d'énergie nucléaire basée sur le cycle thorium en spectre épithermique, Ph.D. thesis, Université Joseph Fourier − Grenoble I, France, 2002 (in French) [Google Scholar]
  33. L. Mathieu, Cycle Thorium et Réacteurs à Sel Fondu: Exploration du champ des Paramètres et des Contraintes définissant le Thorium Molten Salt Reactor, Ph.D. thesis, Grenoble Institute of Technology, France, 2005 (in French) [Google Scholar]
  34. E. van der Linden, Coupled neutronics and computational fluid coupled neutronics and computational fluid dynamics for the molten salt fast reactor, Master thesis, Delft University of Technology (TU Delft), 2012 [Google Scholar]
  35. L.L.W. Frima, Burnup in the molten salt fast reactor (MSFR), Master thesis, Delft University of Technology (TU Delft), 2013 [Google Scholar]
  36. C. Fiorina, A. Cammi, J. Krepel, K. Mikityuk, M.E. Ricotti, Preliminary analysis of the MSFR fuel cycle using modified-EQL3D procedure, in Proceedings of the International Conference ICONE, Anaheim, CA, 2012 [Google Scholar]
  37. C. Fiorina, M. Aufiero, A. Cammi, C. Guerrieri, J. Krepel, L. Luzzi, K. Mikityuk, M.E. Ricotti, Analysis of the MSFR core neutronics adopting different neutron transport models, in Proceedings of the International Conference ICONE, Anaheim, CA, 2012 [Google Scholar]
  38. J. Krepel, S. Pelloni, K. Mikityuk, P. Coddington, EQL3D: ERANOS based equilibrium fuel cycle procedure for fast reactors, Ann. Nucl. Energy 36 , 550 (2009) [CrossRef] [Google Scholar]
  39. M. Aufiero, A. Cammi, C. Fiorina, J. Leppanen, L. Luzzi, M.E. Ricotti, An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the molten salt fast reactor, J. Nucl. Mater. 441 , 473 (2013) [CrossRef] [Google Scholar]
  40. E. Fridman, J. Leppanen, On the use of the serpent Monte Carlo code for few-group cross section generation, Ann. Nucl. Energy 38 , 1399 (2011) [CrossRef] [Google Scholar]
  41. S. Dulla, Models and methods in the neutronics of fluid fuel reactors, Ph.D. thesis, Politecnico di Torino, 2005 [Google Scholar]
  42. S. Dulla, P. Ravetto, M.M. Rostagno, Neutron kinetics of fluid-fuel systems by the quasi-static method, Ann. Nucl. Energy 31 , 1709 (2004) [CrossRef] [Google Scholar]
  43. D. Heuer, E. Merle-Lucotte et al., Simulation tools and new developments of the molten salt fast reactor, Contribution A0115, in Proceedings of the European Nuclear Conference ENC2010, Barcelona, Spain, 2010 [Google Scholar]
  44. E.A. Villarino, R.J.J. Stammler, A. Ferri, J.J. Casal, HELIOS: angularly dependent collision probabilities, Nucl. Sci. Eng. 112 , 16 (1992) [CrossRef] [Google Scholar]
  45. F. Alcaro, S. Dulla, P. Ravetto, Neutronic evaluations for the EVOL molten salt reactor, Trans. Am. Nucl. Soc. 108 , 927 (2013) [Google Scholar]
  46. J.F. Briesmeister, MCNP4B-A General Monte Carlo N Particle Transport Code, Los Alamos Lab. Report LA-12625-M, 1997 [Google Scholar]
  47. M. Brovchenko et al., Preliminary safety calculations to improve the design of molten salt fast reactor, in Proceedings of the International Conference PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education, Knoxville, Tennessee, USA, 2012 [Google Scholar]
  48. J.W. Eastwood, J.G. Morgan, The FISPACT-II(12) Software Specification Document, Technical Report CEM/100421/SD/2, Issue 4, Culham Electromagnetics Ltd., May 2011 [Google Scholar]
  49. C. Fiorina, D. Lathouwers, M. Aufiero, A. Cammi, C. Guerrieri, J.L. Kloosterman, L. Luzzi, M.E. Ricotti, Modelling and analysis of the MSFR transient behavior, Ann. Nucl. Energy 64, 485 (2014) [CrossRef] [Google Scholar]
  50. J. Leppanen, Development of a new Monte Carlo reactor physics code, Ph.D. thesis, Helsinki University of Technology, VTT Publications, 2007, 640 pp. [Google Scholar]
  51. R. Rachamin, C. Wemple, E. Fridman, Neutronic analysis of SFR core with HELIOS-2, SERPENT, and DYN3D codes, Ann. Nucl. Energy 55 , 194 (2013) [CrossRef] [Google Scholar]
  52. G. Rimpault, D. Plisson, J. Tommasi, R. Jacqmin, J. Rieunier, D. Verrier, D. Biron, The ERANOS code and data system for fast reactor neutronic analyses, in Proceedings of the International Conference PHYSOR 2002, Seoul, Korea, 2002 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.