Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 37
Number of page(s) 8
DOI https://doi.org/10.1051/epjn/2016032
Published online 08 September 2016
  1. A. Hämäläinen et al., Coupled code FRAPTRAN-GENFLO for analysing fuel behaviour during PWR and BWR transients and accidents, in Proceedings IAEA Technical Committee Meeting on Fuel Behavior under Transient and LOCA Conditions (IAEA-TECDOC-1320), Halden, Norway, 10–14 September 2001 (2001), p. 43 [Google Scholar]
  2. G. Rossiter, Development of the ENIGMA fuel performance code for whole core analysis and dry storage assessments, Nucl. Eng. Technol. 43, 489 (2011) [CrossRef] [Google Scholar]
  3. K. Geelhood, W. Luscher, C. Beyer, J. Cuta, in FRAPTRAN 1.4: A Computer Code for the Transient Analysis of Oxide Fuel Rods, NUREG-CR-7023 (Pacific Northwest National Laboratory, Richland, USA, 2011), Vol. 1 [Google Scholar]
  4. K. Lassmann, Transuranus: a fuel rod analysis code ready for use, J. Nucl. Mater. 188, 295 (1992) [CrossRef] [Google Scholar]
  5. R.L. Williamson et al., Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423, 149 (2012) [CrossRef] [Google Scholar]
  6. U. Rohde, The modeling of fuel rod behaviour under RIA conditions in the code DYN3D, Ann. Nucl. Energy 28, 1343 (2001) [CrossRef] [Google Scholar]
  7. Nuclear Safety Division, in RELAP5/MOD3.3 Code Manual Volume I: Code Structure, System Models, and Solution Methods, Technical Report, NUREG-CR-5535 Rev 4 (Information Systems Laboratories, Inc., Idaho Falls, USA, 2010), Vol. 1 [Google Scholar]
  8. K. Geelhood, W. Luscher, C. Beyer, in FRAPCON-3.4: a computer code for the calculation of steady-state thermal-mechanical behavior of oxide fuel rods for high burnup, NUREG-CR-7022 (Pacific Northwest National Laboratory, Richland, USA, 2011), Vol. 1 [Google Scholar]
  9. T. Ikonen, V. Tulkki, E. Syrjälahti, V. Valtavirta, J. Leppänen, FINIX - fuel behavior model and interface for multiphysics applications, in Proceedings Fuel Performance Meeting/TopFuel, Charlotte, USA (2013) [Google Scholar]
  10. T. Ikonen, H. Loukusa, E. Syrjälahti, V. Valtavirta, J. Leppänen, V. Tulkki, Module for thermomechanical modeling of LWR fuel in multiphysics simulations, Ann. Nucl. Energy 84, 111 (2015) [CrossRef] [Google Scholar]
  11. T. Ikonen, FINIX Fuel Behavior Model and Interface for Multiphysics Applications. Code Documentation for Version 0.13.9, VTT-R-06563-13 (VTT Technical Research Centre of Finland, Espoo, Finland, 2013), also available at: http://virtual.vtt.fi/virtual/montecarlo/download/VTT-R-06563-13.pdf (referred July 21, 2015) [Google Scholar]
  12. J. Leppänen, Development of a New Monte Carlo Reactor Physics Code, Ph.D. thesis, Helsinki University of Technology, 2007 [Google Scholar]
  13. T. Viitanen, J. Leppänen, Explicit treatment of thermal motion in continuous-energy Monte Carlo Tracking Routines, Nucl. Sci. Eng. 171, 165 (2012) [CrossRef] [Google Scholar]
  14. T. Viitanen, J. Leppänen, Target motion sampling temperature treatment technique with elevated basis cross section temperatures, Nucl. Sci. Eng. 177, 77 (2014) [CrossRef] [Google Scholar]
  15. T. Viitanen, J. Leppänen, Temperature majorant cross sections in Monte Carlo neutron tracking, Nucl. Sci. Eng. 180, 209 (2015) [CrossRef] [Google Scholar]
  16. J. Leppänen, Modeling of nonuniform density distributions in the Serpent 2 Monte Carlo code, Nucl. Sci. Eng. 174, 318 (2013) [CrossRef] [Google Scholar]
  17. J. Leppänen, Development of a dynamic simulation mode in Serpent 2 Monte Carlo code, in Proceedings of M&C 2013, Sun Valley, ID, USA (2013) [Google Scholar]
  18. J. Leppänen et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  19. J. Leppänen et al., The Numerical Multi-Physics Project (NUMPS) at VTT Technical Research Centre of Finland, Ann. Nucl. Energy 84, 55 (2015) [CrossRef] [Google Scholar]
  20. T. Blyth et al., Benchmark for Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of LWRs, Volume II: Specification and Support Data for the Core Cases (Phase II) (OECD/NEA, Paris, France, 2013) [Google Scholar]
  21. M. Daeubler, J. Jimenez, V. Sanches, Development of a high-fidelity Monte Carlo thermal-hydraulics coupled code system Serpent/SUBCHANFLOW – first results, in Proceedings of Physor 2014, Kyoto, Japan (2014) [Google Scholar]
  22. R. Kyrki-Rajamäki, Three-dimensional reactor dynamics code for VVER type nuclear reactors, Tech. Rep. 246, DrTech thesis, Technical Research Centre of Finland, 1995 [Google Scholar]
  23. R. Kyrki-Rajamäki, E. Kaloinen, Results of the third three-dimensional hexagonal dynamic AER benchmark problem including thermal hydraulics calculations in the core and a hot channel, in Proceedings of the fifth Symposium of AER, Dobogókő, Hungary, 15–19 October 1995 (1995), p. 255 [Google Scholar]
  24. R. Kyrki-Rajamäki, E. Kaloinen, Definition of the third three-dimensional hexagonal dynamic AER benchmark problem, in Proceedings of the fourth Symposium of AER, Sozopol, Bulgaria, 10–15 October 1994 (1994), p. 417 [Google Scholar]
  25. T. Ikonen, J. Kättö, H. Loukusa, FINIX Fuel Behavior Model and Interface for Multiphysics Applications. Code Documentation for Version 0.15.6. VTT-R-02988-15 (VTT Technical Research Centre of Finland, Espoo, Finland, 2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.