Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 8
Number of page(s) 12
DOI https://doi.org/10.1051/epjn/e2015-50032-6
Published online 07 March 2016
  1. IAEA, Role of thorium to supplement fuel cycles of future nuclear energy systems, Nuclear Energy Series No. NF-T-2.4, Vienna, 2012 [Google Scholar]
  2. B.A. Lindley et al., Thorium breeder and burner fuel cycles in reduced-moderation LWRs compared to fast reactors, Prog. Nucl. Energy 77 , 107 (2014) [CrossRef] [Google Scholar]
  3. S. Permana, N. Takaki, H. Sekimoto, Preliminary study on feasibility of large and small water cooled thorium breeder reactor in equilibrium states, Prog. Nucl. Energy 50 , 320 (2008) [CrossRef] [Google Scholar]
  4. S. Permana, N. Takaki, H. Sekimoto, Breeding capability and void reactivity analysis of heavy-water-cooled thorium reactor, J. Nucl. Sci. Technol. 45 , 589 (2008) [CrossRef] [Google Scholar]
  5. S. Permana, N. Takaki, H. Sekimoto, Breeding and void reactivity analysis on heavy metal closed-cycle water cooled thorium reactor, Ann. Nucl. Energy 38 , 337 (2011) [CrossRef] [Google Scholar]
  6. S. Şahin et al., Investigation of CANDU reactors as a thorium burner, Energy Convers. Manag. 47 , 1661 (2006) [CrossRef] [Google Scholar]
  7. A. Kumar, P.V. Tsvetkov, Optimization of U–Th fuel in heavy water moderated thermal breeder reactors using multivariate regression analysis and genetic algorithms, Ann. Nucl. Energy 85 , 885 (2015) [CrossRef] [Google Scholar]
  8. Y. Yulianti, Z. Su’ud, N. Takaki, Accident analysis of heavy water cooled thorium breeder reactor, in The 5th Asian physics symposium (APS 2012) , (AIP Publishing, 2015) Vol. 1656 [Google Scholar]
  9. F. Wols et al., Core design and fuel management studies of a thorium-breeder pebble bed high-temperature reactor, Nucl. Technol. 186 , 1 (2014) [CrossRef] [Google Scholar]
  10. E.S. Bettis, R.C. Robertson, The design and performance features of a single-fluid molten-salt breeder reactor, Nucl. Appl. Technol. 8 , 190 (1970) [Google Scholar]
  11. A. Nuttin et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production, Prog. Nucl. Energy 46 , 77 (2005) [CrossRef] [Google Scholar]
  12. J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 , 308 (2014) [CrossRef] [Google Scholar]
  13. C.W. Forsberg, P.F. Peterson, R.A. Kochendarfer, Design options for the advanced high-temperature reactor, in Proceedings of ICAPP ’08 , Anaheim, USA (2008), Paper 8026 [Google Scholar]
  14. F.-P. Fardin, F. Koenig, Preliminary study of the pebble-bed advanced high temperature reactor (University of California, Berkeley, California, 2006) [Google Scholar]
  15. M. Fratoni, Development and applications of methodologies for the neutronic design of the pebble bed advanced high temperature reactor (PB-AHTR) (University of California, Berkeley, California, 2008) [Google Scholar]
  16. R. Hong et al., Reactor safety and mechanical design for the annular pebble-bed advanced high temperature reactor (University of California, Department of Nuclear Engineering, Berkeley, California, 2009) [Google Scholar]
  17. A. Lafuente, M. Piera, Exploring new coolants for nuclear breeder reactors, Ann. Nucl. Energy 37 , 835 (2010) [CrossRef] [Google Scholar]
  18. M.K. Meyer, R. Fielding, J. Gan, Fuel development for gas-cooled fast reactors, J. Nucl. Mater. 371 , 281 (2007) [CrossRef] [Google Scholar]
  19. R. Stainsby et al., Gas cooled fast reactor research in Europe, Nucl. Eng. Des. 241 , 3481 (2011) [CrossRef] [Google Scholar]
  20. L.L. Snead et al., Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 , 329 (2007) [CrossRef] [Google Scholar]
  21. L.L. Snead, Y. Katoh, S. Connery, Swelling of SiC at intermediate and high irradiation temperatures, J. Nucl. Mater. 367 , 677 (2007) [CrossRef] [Google Scholar]
  22. Y. Katoh et al., Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16 , 143 (2012) [CrossRef] [Google Scholar]
  23. Y. Katoh et al., Stability of SiC and its composites at high neutron fluence, J. Nucl. Mater. 417 , 400 (2011) [CrossRef] [Google Scholar]
  24. Y. Katoh et al., Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures, J. Nucl. Mater. 417 , 416 (2011) [CrossRef] [Google Scholar]
  25. J.A. Jung et al., Feasibility study of fuel cladding performance for application in ultra-long cycle fast reactor, J. Nucl. Mater. 440 , 596 (2013) [CrossRef] [Google Scholar]
  26. K. Fukuda, K. Iwamoto, Diffusion behavior of fission product in pyrolytic silicon carbide, J. Nucl. Mater. 75 , 131 (1978) [CrossRef] [Google Scholar]
  27. D.J. Cumberland, R.J. Crawford, The packing of particles, in Handbook of powder technology (Elsevier, Amsterdam, 1987) Vol. 6, p. 45 [Google Scholar]
  28. A.T. Cisneros, E. Greenspan, P. Peterson, Use of thorium blankets in a pebble bed advanced high temperature reactor, in Proceedings of the 2010 International Congress on Advances in Nuclear Power Plants-ICAPP’10 , (2010) [Google Scholar]
  29. R. Hong et al., Reactor safety and mechanical design for the annular pebble-bed advanced high temperature reactor (University of California, Department of Nuclear Engineering, Berkeley, California, 2009) [Google Scholar]
  30. G. Zhu, Y. Zou, M. Li et al., Development of burnup calculation code for pebble-bed high temperature reactor at equilibrium state, Atomic Energy Sci. Technol. 49 , 890 (2015) [Google Scholar]
  31. E. Teuchert, U. Hansen, K.-A. Haas, VSOP-Computer code system for reactor physics and fuel cycle simulation, Kernforschungsanlage Juelich GmbH (Germany, FR), Institut fuer Reaktorentwicklung, 1980 [Google Scholar]
  32. H.D. Gougar, M.O. Abderrafi, W.K. Terry, Advanced core design and fuel management for pebble-bed reactors (Idaho National Laboratory, 2004), No. INEEL/EXT-04-02245 [CrossRef] [Google Scholar]
  33. A.T. Jr., Cisneros, Pebble bed reactors design optimization methods and their application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR) (University of California, Berkeley, California, 2013) [Google Scholar]
  34. D. Hanson et al., Development plan for advanced high temperature coated-particle fuels (General Atomics, San Diego, CA, 2004), PC-000513, Rev. 0 [Google Scholar]
  35. N. Wakao, T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers, Chem. Eng. Sci. 33 , 1375 (1978) [CrossRef] [Google Scholar]
  36. A. Griveau et al., Transient thermal response of the PB-AHTR to loss of forced cooling, in Global 2007, UC Berkeley and INL , Boise, Idaho, 9th–13th September, 2007 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.