Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 1, 2015
Article Number 8
Number of page(s) 9
DOI https://doi.org/10.1051/epjn/e2015-50042-9
Published online 09 December 2015
  1. P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems, J. Nucl. Mater. 385, 217 (2009) [CrossRef] [Google Scholar]
  2. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12, 12 (2009) [CrossRef] [Google Scholar]
  3. A. Iveković, S. Novak, G. Dražić, D. Blagoeva, S.G. de Vicente, Current status and prospects of SiCf/SiC for fusion structural applications, J. Eur. Ceram. Soc. 33, 1577 (2013) [CrossRef] [Google Scholar]
  4. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 671 (2012) [CrossRef] [PubMed] [Google Scholar]
  5. J. Huguet-Garcia, A. Jankowiak, S. Miro, D. Gosset, Y. Serruys, J.-M. Costantini, Study of the Ion-irradiation behavior of advanced SiC fibers by Raman Spectroscopy and Transmission Electron Microscopy, J. Am. Ceram. Soc. 98, 675 (2015) [CrossRef] [Google Scholar]
  6. A.R. Bunsell, A. Piant, A review of the development of three generations of small diameter silicon carbide fibres, J. Mater. Sci. 41, 823 (2006) [CrossRef] [Google Scholar]
  7. C. Sauder, J. Lamon, Tensile creep behavior of SiC-based fibers with a low oxygen content, J. Am. Ceram. Soc. 90, 1146 (2007) [CrossRef] [Google Scholar]
  8. Y. Serruys, P. Trocellier, S. Miro, E. Bordas, M.O. Ruault, O. Kaïtasov, S. Henry, O. Leseigneur, T. Bonnaillie, S. Pellegrino, S. Vaubaillon, D. Uriot, JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling, J. Nucl. Mater. 386-388, 967 (2009) [CrossRef] [Google Scholar]
  9. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010) [NASA ADS] [CrossRef] [Google Scholar]
  10. R. Devanathan, W.J. Weber, F. Gao, Atomic scale simulation of defect production in irradiated 3C-SiC, J. Appl. Phys. 90, 2303 (2001) [CrossRef] [Google Scholar]
  11. R. Podor, D. Pailhon, J. Ravaux, H.-P. Brau, Development of an integrated thermocouple for the accurate sample temperature measurement during high temperature Environmental Scanning Electron Microscope (HT-ESEM) experiments, Microscopy and Microanalysis 21, 307 (2015) [CrossRef] [Google Scholar]
  12. F. Bechstedt, P. Käckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmüller, Polytypism and properties of silicon carbide, Phys. Status Solidi 202, 35 (1997) [CrossRef] [Google Scholar]
  13. P. Colomban, G. Gouadec, L. Mazerolles, Raman analysis of materials corrosion: the example of SiC fibers, Mater. Corros. 53, 306 (2002) [CrossRef] [Google Scholar]
  14. G. Gouadec, P. Colomban, Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007) [CrossRef] [Google Scholar]
  15. M. Havel, P. Colomban, Raman and Rayleigh mapping of corrosion and mechanical aging in SiC fibres, Compos. Sci. Technol. 65, 353 (2005) [CrossRef] [Google Scholar]
  16. S. Nakashima, H. Harima, Raman investigation of SiC polytypes, Phys. Status Solidi 162, 39 (1997) [CrossRef] [Google Scholar]
  17. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size L[sub a] of nanographite by Raman spectroscopy, Appl. Phys. Lett. 88, 163106 (2006) [NASA ADS] [CrossRef] [Google Scholar]
  18. S. Zinkle, Radiation-induced effects on microstructure, Compr. Nucl. Mater. 1, 65 (2012) [CrossRef] [Google Scholar]
  19. G.S. Was, R.S. Averback, Radiation damage using ion beams, Compr. Nucl. Mater. 1, 195 (2012) [CrossRef] [Google Scholar]
  20. S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, J.-J. Grob, Raman spectroscopy study of heavy-ion-irradiated α-SiC, J. Phys.: Condens. Matter 18, 5235 (2006) [CrossRef] [Google Scholar]
  21. W. Bolse, Formation and development of disordered networks in Si-based ceramics under ion bombardment, Nucl. Instrum. Methods Phys. Res. B 141, 133 (1998) [CrossRef] [Google Scholar]
  22. M. Ishimaru, A. Hirata, M. Naito, I.-T. Bae, Y. Zhang, W.J. Weber, Direct observations of thermally induced structural changes in amorphous silicon carbide, J. Appl. Phys. 104, 033503 (2008) [CrossRef] [Google Scholar]
  23. M. Ishimaru, I.-T. Bae, Y. Hirotsu, S. Matsumura, K.E. Sickafus, Structural relaxation of amorphous silicon carbide, Phys. Rev. Lett. 89, 055502 (2002) [CrossRef] [Google Scholar]
  24. F. Linez, A. Canizares, A. Gentils, G. Guimbretiere, P. Simon, M.-F. Barthe, Determination of the disorder profile in an ion-implanted silicon carbide single crystal by Raman spectroscopy, J. Raman Spectrosc. 43, 939 (2012) [CrossRef] [Google Scholar]
  25. S. Miro, J.-M. Costantini, J. Huguet-Garcia, L. Thomé, Recrystallization of hexagonal silicon carbide after gold ion irradiation and thermal annealing, Philos. Mag. 94, 3898 (2014) [CrossRef] [Google Scholar]
  26. J. Jagielski, L. Thomé, Damage accumulation in ion-irradiated ceramics, Vacuum 81, 1352 (2007) [CrossRef] [Google Scholar]
  27. X. Kerbiriou, J.-M. Costantini, M. Sauzay, S. Sorieul, L. Thomé, J. Jagielski, J.-J. Grob, Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: effects on swelling and mechanical properties, J. Appl. Phys. 105, 073513 (2009) [CrossRef] [Google Scholar]
  28. W.G. Wolfer, Fundamental properties of defects in metals, Compr. Nucl. Mater. 1, 1 (2012) [CrossRef] [Google Scholar]
  29. T.D. Shen, Radiation tolerance in a nanostructure: is smaller better?, Nucl. Instrum. Methods Phys. Res. B 266, 921 (2008) [CrossRef] [Google Scholar]
  30. W. Jiang, H. Wang, I. Kim, I.-T. Bae, G. Li, P. Nachimuthu, Z. Zhu, Y. Zhang, W. Weber, Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation, Phys. Rev. B 80, 161301 (2009) [CrossRef] [Google Scholar]
  31. W. Jiang, H. Wang, I. Kim, Y. Zhang, W.J. Weberb, Amorphization of nanocrystalline 3C-SiC irradiated with Si ions, J. Mater. Res. 25, 2341 (2010) [CrossRef] [Google Scholar]
  32. L. Jamison, P. Xu, K. Sridharan, T. Allen, Radiation resistance of nanocrystalline silicon carbide, in Advances in materials science for environmental and nuclear technology II: ceramic transactions, edited by S.K. Sundaram, K. Fox, T. Ohji, E. Hoffman (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011), Vol. 227 [Google Scholar]
  33. L. Jamison, M.-J. Zheng, S. Shannon, T. Allen, D. Morgan, I. Szlufarska, Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation, J. Nucl. Mater. 445, 181 (2014) [CrossRef] [Google Scholar]
  34. Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16, 143 (2012) [CrossRef] [Google Scholar]
  35. S. Miro, J.-M. Costantini, S. Sorieul, L. Gosmain, L. Thomé, Recrystallization of amorphous ion-implanted silicon carbide after thermal annealing, Philos. Mag. Lett. 92, 633 (2012) [CrossRef] [Google Scholar]
  36. A. Höfgen, V. Heera, F. Eichhorn, W. Skorupa, Annealing and recrystallization of amorphous silicon carbide produced by ion implantation, J. Appl. Phys. 84, 4769 (1998) [CrossRef] [Google Scholar]
  37. J. Huguet-Garcia, A. Jankowiak, S. Miro, R. Podor, E. Meslin, Y. Serruys, J.-M. Costantini, In situ E-SEM and TEM observations of the thermal annealing effects on ion-amorphized 6H-SiC single crystals and nanophased SiC fibers, Phys. Status Solidi 252, 149 (2015) [CrossRef] [Google Scholar]
  38. C.J.M. Denissen, J. Liebe, M. van Rijswick, Recrystallisation temperature of tungsten as a function of the heating ramp, Int. J. Refract. Met. Hard Mater. 24, 321 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.