Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 1, 2015
Article Number 14
Number of page(s) 10
DOI https://doi.org/10.1051/epjn/e2015-50011-8
Published online 11 December 2015
  1. D.F. Williams, K.T. Clarno, L.M. Toth, Assessment of candidate liquid-salt coolants for the Advanced High-Temperature Reactor (AHTR) ORNL/TM-2006/12, Oak Ridge National Laboratory, Tennessee, 2006 [CrossRef] [Google Scholar]
  2. D.F. Williams, K.T. Clarno, Evaluation of salt coolants for reactor applications, Nucl. Technol. 163, 330 (2008) [Google Scholar]
  3. M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties, INL/EXT-10-18297, Idaho, 2010 [CrossRef] [Google Scholar]
  4. O. Benes, C. Cabet, S. Delpech, P. Hosnedl, V. Ignatiev, R. Konings, D. Lecarpentier, O. Matal, E. Merle-Lucotte, C. Renault, J. Uhlir, Assessment of liquid salts for innovative applications, ALISIA Deliverable (D-50), European Commission, Euratom Research and Training Programme on Nuclear Energy, 2009 [Google Scholar]
  5. C.W. Forsberg, The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant, Prog. Nucl. Energy 47, 32 (2005) [CrossRef] [Google Scholar]
  6. R.O. Scarlat, P.F. Peterson, The current status of fluoride salt-cooled high-temperature reactor (FHR) technology and its overlap with HIF target chamber concepts, Nucl. Inst. Methods Phys. Res. A. 733, 57 (2013) [CrossRef] [Google Scholar]
  7. N. Zweibaum, G. Cao, A.T. Cisneros, B. Kelleher, M.R. Laufer, R.O. Scarlat, J.E. Seifried, M.H. Anderson, C.W. Forsberg, E. Greenspan, L.W. Hu, P.F. Peterson, K. Sridharan, Phenomenology, methods, and experimental program for fluoride-salt-cooled high temperature reactors, Prog. Nucl. Energy 77, 390 (2014) [CrossRef] [Google Scholar]
  8. E. Urquiza, K. Lee, P.F. Peterson, R. Grief, Multiscale transient thermal, hydraulic, and mechanical analysis methodology of a printed circuit heat exchanger using an effective porous media approach, J. Therm. Sci. Eng. Appl. 5, 041011-1 (2013) [CrossRef] [Google Scholar]
  9. R.S. Schultz et al., Next generation nuclear plant methods technical program plan, INL/EXT-06-11804, Idaho, 2007 [CrossRef] [Google Scholar]
  10. Y. Tung, R.W. Johnson, Y. Ferng, C. Chieng, Bypass flow computations on the LOFA transient in a VHTR, Appl. Therm. Eng. 62, 415 (2014) [CrossRef] [Google Scholar]
  11. E. Reshotko, Analysis of laminar instability problem in gas-cooled nuclear reactor passages, AIAA J. 5, 1606 (1967) [CrossRef] [Google Scholar]
  12. G. Melese, R. Katz, Thermal and flow design of helium-cooled reactors (ANS, Illinois, 1984) [CrossRef] [Google Scholar]
  13. D.M. McEligot, J.D. Jackson, Deterioration criteria for convective heat transfer in gas flow through non-circular ducts, Nucl. Eng. Design 232, 327 (2004) [CrossRef] [Google Scholar]
  14. J.I. Lee, P. Hehzlar, P. Saha, M.S. Kazimi, Studies of the deteriorated turbulent heat transfer regime for the gas-cooled fast reactor decay heat removal system, Nucl. Eng. Design 237, 1033 (2007) [CrossRef] [Google Scholar]
  15. D. Chapin, S. Kiffer, J. Nestell, The very high temperature reactor: a technical summary (MPR Associates, 2004) [Google Scholar]
  16. A. Hoshi, D.R. Mills, A. Bittar, T.S. Saitoh, Screening of high melting point Phase Change Materials (PCM) in solar thermal concentration technology, Solar Energy 79, 332 (2005) [CrossRef] [Google Scholar]
  17. J.C. Gomez, High-temperature Phase Change Materials (PCM) candidates for thermal energy storage applications, NREL Report, NREL/TP-5500-51446, 2011 [Google Scholar]
  18. E. Bojarsky, H. Deckers, H. Lehning, P.H. Reiser, L. Schmidt, THIBO experiments – thermohydraulically induced fuel pin oscillations in Na-cooled reactors, Nucl. Eng. Design 130, 21 (1991) [CrossRef] [Google Scholar]
  19. L. Meyer, Challenges related to the use of liquid metal and molten salt coolants in advanced reactors, TECDOC-1696 (IAEA, Austria, 2013) [Google Scholar]
  20. GE Measurement and Control Brochure, Panaflow HT panametrics ultrasonic SIL flow meter for liquids, 2014 [Google Scholar]
  21. Gefran Brochure, Melt pressure transducers and transmitters, 2014 [Google Scholar]
  22. G.L. Yoder, A. Aaron, B. Cunningham, D. Fugate, D. Holcomb, R. Kisner, F. Peretz, K. Robb, J. Wilgen, D. Wilson, An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor, Ann. Nucl. Energy 64, 511 (2014) [CrossRef] [Google Scholar]
  23. J.A. Ritchie, Pressure measurement instrumentation in a high temperature molten salt test loop, MS Thesis, U. of Tennessee, 2010 [Google Scholar]
  24. PWR Primary Water Chemistry Guidelines, EPRI Technical Report, TR-105714-V1R4, 1999 [Google Scholar]
  25. T. Terachi, T. Yamada, T. Miyamotot, K. Arioka, K. Fuku, Corrosion behavior of stainless steels in simulated PWR primary water – Effect of chromium content in alloys and dissolved hydrogen, J. Nucl. Sci. Technol. 45, 975 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.