Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: the Awards collection
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 7 | |
Section | Part 2: Radioactive waste management | |
DOI | https://doi.org/10.1051/epjn/2022045 | |
Published online | 22 November 2022 |
https://doi.org/10.1051/epjn/2022045
Regular Article
In-Can vitrification of ALPS slurries from Fukushima Daiichi effluent treatment using DEM&MELT technology
1
CEA, DES, ISEC, DE2D, Univ. Montpellier, 30207 Marcoule, France
2
Orano Recyclage, 125 avenue de Paris, 92320 Châtillon, France
* e-mail: alienor.vernay@cea.fr
Received:
25
July
2022
Received in final form:
19
October
2022
Accepted:
24
October
2022
Published online: 22 November 2022
After the accident at the Fukushima Dai-ichi Nuclear Power Station, a large amount of contaminated water was treated using several decontamination systems with different natures of adsorbents and chemicals. The resulting wastes, called Fukushima Effluent Treatment Wastes (FETW), were stored at the Fukushima Dai-ichi site. Vitrification could be the most promising treatment method to package these wastes. The consortium gathering CEA, Orano, ECM Technologies and ANDRA, implemented an in situ, robust, simple and versatile In-Can vitrification process, the DEM&MELT technology. Since 2018, the applicability of this technology for FETW treatment and conditioning has been evaluated. In 2021–2022, studies focused on one particular waste, coming from the ALPS system (Advanced Liquid Processing System-Multi Radionuclides Removal) generating around 70%vol. of FETW. This waste is composed of two co-precipitation slurries: one mainly composed of iron hydroxide, and one of calcium carbonate and magnesium hydroxide. The purpose of this article is to highlight the feasibility of ALPS slurries vitrification with DEM&MELT, relying on tests performed from laboratory-scale to full-scale. Macroscopically homogeneous glasses were produced using the DEM&MELT demonstrator, with a waste loading of 60 wt.% (expressed as waste dry mass) and microstructural analyses were performed. It gives promising results for FETW conditioning with the DEM&MELT process.
© A. Vernay et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.