Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: the Awards collection
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 6 | |
Section | Part 1: Safety research and training of reactor systems | |
DOI | https://doi.org/10.1051/epjn/2022046 | |
Published online | 22 November 2022 |
https://doi.org/10.1051/epjn/2022046
Regular Article
PARUPM: A simulation code for passive auto-catalytic recombiners
1
Universidad Politécnica de Madrid, ETSI Industriales. José Gutiérrez Abascal, 2., 28006 Madrid, Spain
2
Consejo de Seguridad Nuclear. C/Pedro Justo Dorado Dellmans, 11, 28040 Madrid, Spain
3
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
* e-mail: araceli.dominguez@upm.es
Received:
31
August
2022
Received in final form:
21
October
2022
Accepted:
26
October
2022
Published online: 22 November 2022
In the event of a severe accident with core damage in a water-cooled nuclear reactor, combustible gases (H2 and possibly CO) get released into the containment atmosphere. An uncontrolled combustion of a large cloud with a high concentration of combustible gases could lead to a threat to the containment integrity if concentrations within their flammability limits are reached. To mitigate this containment failure risk, many countries have proceeded to install passive auto-catalytic recombiners (PARs) inside containment buildings. These devices represent a passive strategy for controlling combustible gases, since they can convert H2 and CO into H2O and CO2, respectively. In this work, the code PARUPM developed by the Department of Energy Engineering at the UPM is described. This work is part of the AMHYCO project (Euratom 2014–2018, GA No. 945057) aiming at improving experimental knowledge and simulation capabilities for the H2/CO combustion risk management in severe accidents (SAs). Thus, enhancing the available knowledge related to PAR operational performance is one key point of the project. The PARUPM code includes a physicochemical model developed for the simulation of surface chemistry, and heat and species mass transfer between the catalytic sheets and gaseous mixtures of hydrogen, carbon monoxide, air, steam and carbon dioxide. This model involves a simplified Deutschmann reaction scheme for the surface combustion of methane, and the Elenbaas analysis for buoyancy-induced heat transfer between parallel plates. Mass transfer is considered using the heat and mass transfer analogy. By simulating the recombination reactions of H2 and CO inside the catalytic section of the PAR, PARUPM allows studying the effect of CO on transients related to accidents that advance towards the ex-vessel phase. A thorough analysis of the code capabilities by comparing the numerical results with experimental data obtained from the REKO-3 facility has been executed. This analysis allows for establishing the ranges in which the code is validated and to further expands the capabilities of the simulation code which will lead to its coupling with thermal-hydraulic codes in future steps of the project.
© Domínguez-Bugarín et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.