Issue |
EPJ Nuclear Sci. Technol.
Volume 3, 2017
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/epjn/2017001 | |
Published online | 21 March 2017 |
https://doi.org/10.1051/epjn/2017001
Regular Article
Neutronics characterization of an erbia fully poisoned PWR assembly by means of the APOLLO2 code
ENEA,
Via Martiri di Monte Sole 4,
40129
Bologna, Italy
⁎ e-mail: roberto.pergreffi@enea.it
Received:
19
October
2016
Received in final form:
19
December
2016
Accepted:
24
January
2017
Published online: 21 March 2017
Recently, increasing demands on the reduction of fuel cycle costs have led to higher burnup fuel designs. According to the erbia-credit super high burnup fuel concept, developed by mixing low content of erbia to UO2 powder directly after reconversion process so that all fuel pins in a given fuel assembly are homogeneously doped, the present study aims to characterize, from a neutronic point of view, a 17 × 17 pressurized water reactor assembly enriched to 10.27 wt.% in 235U with an erbia content of 1 at.% (i.e. 0.7 wt.%) by means of the deterministic neutronic code APOLLO2. For this purpose, a simplified thermal-hydraulic analysis was performed in order to evaluate the effects on fuel thermal conductivity of adding erbia to uranium oxide. The results obtained allow to conclude that an Er-doped assembly enriched to >5 wt.% in 235U represents an advantageous solution for very long fuel cycles, and it is so suited for very high burnups.
© R. Pergreffi et al., published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.