Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 43
Number of page(s) 17
DOI https://doi.org/10.1051/epjn/2025040
Published online 15 August 2025
  1. OperaHPC project website: https://www.operahpc.eu/ [Google Scholar]
  2. P. Van Uffelen, G. Pastore, 2.13 – in Oxide Fuel Performance Modeling and Simulation, Comprehensive Nuclear Materials, edited by R.J.M. Konings, R.E. Stoller, 2nd edn. (Elsevier, 2020), Vol. 2, pp. 363–416, https://doi.org/10.1016/B978-0-12-803581-8.11693-5 [Google Scholar]
  3. A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, The OFFBEAT multi-dimensional fuel behavior solver, Nucl. Eng. Des. 358, 110416 (2020), https://doi.org/10.1016/j.nucengdes.2019.110416 [Google Scholar]
  4. P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516, 373 (2019), https://doi.org/10.1016/j.jnucmat.2018.12.037 [Google Scholar]
  5. C. Introïni, I. Ramière, J. Sercombe, B. Michel, T. Helfer, J. Fauque, ALCYONE: The fuel performance code of the PLEIADES platform dedicated to PWR fuel rods behavior, Ann. Nucl. Energy 207, 110711 (2024), https://doi.org/10.1016/j.anucene.2024.110711 [Google Scholar]
  6. M. Lainet, B. Michel, J.-C. Dumas, M. Pelletier, I. Ramière, GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516, 30 (2019), https://doi.org/10.1016/j.jnucmat.2018.12.030 [Google Scholar]
  7. J. Noirot, Y. Pontillon, S. Yagnik, J.A. Turnbull, Post-irradiation examinations and high-temperature tests on undoped large-grain UO2 discs, J. Nucl. Mater. 462, 77 (2015), https://doi.org/10.1016/j.jnucmat.2015.03.008 [Google Scholar]
  8. H. Fuentes, A. Socié, C. Colin, Design of a compression mechanical testing device for irradiated fuel at high temperature, Milestone MS2 document of the OperaHPC project. [Google Scholar]
  9. C. Onofri, Results of TEM and SEM characterization of irradiated fuel before mechanical testing. OperaHPC Public (PU) project deliverable D1.1 (2024), https://www.operahpc.eu/documents-and-results/ [Google Scholar]
  10. J.-E. Suchorski, A. Pivano, J. Amodeo, Screw dislocation core structure and mobility in UO2, The 11th International Conference on Multiscale Materials Modeling (MMM11), 22-27 September 2024, Prague, Czech Republic, https://mmm11.ipm.cz [Google Scholar]
  11. L. Dixon, M. Rushton, The determination of fracture toughness in UO2 using classical Molecular Dynamics, Second annual meeting of the OperaHPC Euratom project, 20-21 November 2024, Cordoba, Spain [Google Scholar]
  12. P. Aragón, F. Feria, L.E. Herranz, A. Schubert, P. Van Uffelen, Fuel performance modelling of Cr-coated Zircaloy cladding under DBA/LOCA conditions, Ann. Nucl. Energy 211, 110950 (2025), https://doi.org/10.1016/j.anucene.2024.110950 [Google Scholar]
  13. G. Latu, T. Helfer, S. Bernaud, G. Folzan, MFEM-MGIS-MFRONT, A HPC mini-application targeting nonlinear thermo-mechanical simulations of nuclear fuels at mesoscale, TMDA Open-Source Modelling and Simulation Tools for Nuclear Reactors, IAEA Conferences, https://conferences.iaea.org/event/247/contributions/20551/attachments/10969/16119/Abstract_Latu.docx [Google Scholar]
  14. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: A new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater.s 532, 152042 (2020), https://doi.org/10.1016/j.jnucmat.2020.152042 [Google Scholar]
  15. A. Scolaro, B. Michel, G. Latu, D. Pizzocri, L. Luzzi, I. Clifford, Best practices and QA protocols for code development. OperaHPC PU project deliverable D4.1 (2023), https://www.operahpc.eu/documents-and-results/ [Google Scholar]
  16. I. Guénot-Delahaie et al., Task 5.1 – Update on the verification status of OperaHPC tools caried out and remaining work towards D5.1, Second annual meeting of the OperaHPC Euratom project, 20-21 November 2024, Cordoba, Spain [Google Scholar]
  17. T. Barani et al., Modelling over-fragmentation induced by pressurized bubbles into a brittle material by MMM, Second annual meeting of the OperaHPC Euratom project, 20-21 November 2024, Cordoba, Spain [Google Scholar]
  18. L. Verma, I. Clifford, P. Konarski, A. Scolaro, H. Ferroukhi, OFFBEAT V&V studies for REBEKA tests on cladding ballooning and burst during LOCA conditions, Ann. Nucl. Energy 208, 110773 (2024), https://doi.org/10.1016/j.anucene.2024.110773 [Google Scholar]
  19. M. Reymond, J. Sercombe, A. Scolaro, Investigation of the PCMI failure of pre-hydrided Zy-4 cladding during Reactivity Initiated Accidents with ALCYONE and OFFBEAT fuel performance codes, Nucl. Eng. Des. 427, 113430 (2024), https://doi.org/10.1016/j.nucengdes.2024.113430 [Google Scholar]
  20. E.L. Brunetto, A. Scolaro, C. Fiorina, A. Pautz, Extension of the OFFBEAT fuel performance code to finite strains and validation against LOCA experiments, Nucl. Eng. Des. 406, 112232 (2023), https://doi.org/10.1016/j.nucengdes.2023.112232 [Google Scholar]
  21. L. Verma, I. Clifford, H. Ferroukhi, A. Scolaro, Extending the validation database of OFFBEAT fuel performance code for LOCA scenarios, TOPFUEL 2024, 29 September - 3 October 2024, Grenoble, France. https://www.operahpc.eu/wp-content/uploads/2024/11/3.Verma_et_al_TopFuel2024_Final.pdf [Google Scholar]
  22. G. Zullo, A. Scolaro, T. Barani, D. Pizzocri, Two-phase modelling for fission gas sweeping in restructuring nuclear oxide fuel, Nucl. Eng. Des. 429, 113602 (2024), https://doi.org/10.1016/j.nucengdes.2024.113602 [Google Scholar]
  23. G. Zullo, D. Pizzocri, A. Scolaro, P. Van Uffelen, F. Feria, L.E. Herranz, L. Luzzi, Integral-scale validation of the SCIANTIX code for Light Water Reactor fuel rods, J. Nucl. Mater. 601, 155305 (2024), https://doi.org/10.1016/j.jnucmat.2024.155305 [Google Scholar]
  24. G. Nicodemo, G. Zullo, F. Cappia, P. Van Uffelen, A. De Lara, L. Luzzi, D. Pizzocri, Chromia-doped UO2 fuel: An engineering model for chromium solubility and fission gas diffusivity, J. Nucl. Mater. 601, 155301 (2024), https://doi.org/10.1016/j.jnucmat.2024.155301 [Google Scholar]
  25. G. Zullo, D. Pizzocri, L. Luzzi, The SCIANTIX code for fission gas behaviour: Status, upgrades, separate-effect validation, and future developments, J. Nucl. Mater. 587, 154744 (2023), https://doi.org/10.1016/j.jnucmat.2023.154744 [Google Scholar]
  26. Preliminary (beta) version of the new OFFBEAT developments, GitLab repository: https://gitlab.com/foam-for-nuclear/offbeat [Google Scholar]
  27. T. Helfer et al., MFEM/MGIS, a HPC mini-application targeting nonlinear thermo-mechanical simulations of nuclear fuels at mesoscale, The Journal of Open Source Software, (n.d.)., Retrieved 22 November 2024 from: https://joss.theoj.org/papers/8033479e79b6f2a12d81ad676919bb2b [Google Scholar]
  28. Preliminary (beta) version of the new MMM developments, GitLab repository: https://github.com/rprat-pro/mm-opera-hpc/ [Google Scholar]
  29. R. Lo Frano, S.A. Cancemi, L. Giaccardi, P. Van Uffelen, S. Gianfelici, T. Barani, D. Pizzocri, R. Largenton, M. Povilaitis, F. Feira, L. Caveglia Curtil, Numerical and mathematical approaches for computation time reduction, OperaHPC PU deliverable D6.1 (2024), https://www.operahpc.eu/documents-and-results/ [Google Scholar]
  30. M. Zilly, Simulation of fuel element behaviour in operating and accidental transient conditions, Second annual meeting of the OperaHPC Euratom project, 20-21 November 2024, Cordoba, Spain [Google Scholar]
  31. B. Michel, S. De Grandis, Plan for the Exploitation and Dissemination of Results, OperaHPC PU deliverable D8.2 (2023), https://www.operahpc.eu/documents-and-results/ [Google Scholar]
  32. B. Michel, M. Bertolus, Minutes of the first End User Group meeting, OperaHPC PU deliverable D8.5 (2024), https://www.operahpc.eu/documents-and-results/ [Google Scholar]
  33. E.J. Lahoda, L. Hallstadius, F. Boylan, S. Ray, What should be the objective of accident tolerant fuel?, Trans. – Am. Nucl. Soc. 110, 733 (2014) [Google Scholar]
  34. P.A. Mouche, K.A. Terrani, Steam pressure and velocity effects on high temperature silicon carbide oxidation, J. Am. Ceram. Soc. 103, 2062 (2020), https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.16834 [Google Scholar]
  35. R.O. Fournier, J.J. Rowe, The solubility of amorphous silica in water at high temperatures and high pressures, Am. Mineral. 62, 1052 (1977) [Google Scholar]
  36. SCORPION project website: https://projectscorpion.eu [Google Scholar]
  37. S. Morris, T. Hawkins, P. Foy, C. McMillan, J. Fan, L. Zhu, R. Stolen, R. Rice, J. Ballato, Reactive molten core fabrication of silicon optical fiber, Opt. Mater. Express 1, 1141 (2011), https://doi.org/10.1364/OME.1.001141 [Google Scholar]
  38. M. Steinbrueck, M. Grosse, U. Stegmaier, J. Braun, C. Lorrette, Oxidation of silicon carbide composites for nuclear applications at very high temperatures in steam, Coatings 12, 875 (2022), https://doi.org/10.3390/coatings12070875 [Google Scholar]
  39. P. Wang, G.S. Was, Oxidation of Zircaloy-4 during in situ proton irradiation and corrosion in PWR primary water, J. Mater. Res. 30, 1335 (2015), https://doi.org/10.1557/jmr.2014.408 [Google Scholar]
  40. S. Kondo, S. Mouri, Y. Hyodo, T. Hinoki, F. Kano, Role of irradiation-induced defects on SiC dissolution in hot water, Corrosion Sci. 112, 402 (2016), https://doi.org/10.1016/j.corsci.2016.08.007 [Google Scholar]
  41. S.S. Raiman, A. Flick, O. Toader, P. Wang, N.A. Samad, Z. Jiao, G.S. Was, A facility for studying irradiation accelerated corrosion in high temperature water, J. Nucl. Mater. 451, 40 (2014), https://doi.org/10.1016/j.jnucmat.2014.03.022 [Google Scholar]
  42. S.S. Raiman, D.M. Bartels, G.S. Was, Radiolysis driven changes to oxide stability during irradiation-corrosion of 316L stainless steel in high temperature water, J. Nucl. Mater. 493, 40 (2017), https://doi.org/10.1016/j.jnucmat.2017.05.042 [Google Scholar]
  43. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 268, 1818 (2010), https://doi.org/10.1016/j.nimb.2010.02.091 [Google Scholar]
  44. J. Xi, C. Liu, D. Morgan, I. Szlufarska, Deciphering water-solid reactions during hydrothermal corrosion of SiC, Acta Mater. 209, 116803 (2021), https://doi.org/10.1016/j.actamat.2021.116803 [Google Scholar]
  45. F. Zhang, K. Vanmeensel, M. Batuk, J. Hadermann, M. Inokoshi, B. Van Meerbeek, I. Naert, J. Vleugels, Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation, Acta Biomater. 16, 215 (2015), https://doi.org/10.1016/j.actbio.2015.01.037 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.