Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 41
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2025038
Published online 07 August 2025
  1. International Atomic Energy Agency, IAEA, https://www.iaea.org/topics/research-reactor-applications [Google Scholar]
  2. IAEA, Exploring Research Reactors and Their Use, https://www.iaea.org/newscenter/news/exploring-research-reactors-and-their-use [Google Scholar]
  3. IAEA, Research Reactor Database, https://nucleus.iaea.org/rrdb/{#}/home [Google Scholar]
  4. Pallas, https://www.pallasreactor.com/en [Google Scholar]
  5. JHR, Jules Horowitz material tesrt reactor, https://jhrreactor.com/en [Google Scholar]
  6. Á. Horváth, M. Kolluri, Research on Materials Ageing and Structural Integrity of Research Reactors, Proposal Acronym: Magic-RR, Euratom work programme 2023, Topic identifier: HORIZON-EURATOM-2023-NRT-01-01, Type of action: RIA, Proposal number: 101166335 [Google Scholar]
  7. K. Farrell, Microstructure and tensile properties of heavily irradiated 5052-0 aluminum alloy, J. Nucl. Mater. 97, 33 (1981) [Google Scholar]
  8. K. Farrell, Performance of aluminum in research reactors, in Comprehensive Nuclear Materials, editor by R.J.M. Konings, (Elsevier, Oxford, 2012), pp.143–157 [Google Scholar]
  9. K. Farrell, Assessment of Aluminum Structural Materials for Service within the ANS Reflector Vessel, ORNL Report. Report No. ORNL/TM-13049; DOE TN (United States), 1995 [Google Scholar]
  10. B. Kapusta, C. Sainte-Catherine, X. Averty, G. Campioni, A. Ballagny, Mechanical characteristics pf 5754-NET-O aluminum alloy irradiated up to high fluences: Neutron spectrum and temperature effects, in Joint Meeting of the National Organization of Test, Research, and Training Reactors and the International Group on Research Reactors, Gaitherburg, September 12-16, 2005 [Google Scholar]
  11. J.R. Weeks, C.J. Czajkowski, P.R. Tichler, Effects of High Thermal and High Fast Fluences on the Mechanical Properties of Type 6061 Aluminum in the HFBR, ASTM STP 1046 (West Conshohocken, PA, USA, 1990), pp. 441–452 [Google Scholar]
  12. A. Munitz, Mechanical Properties and Microstructure of Neutron Irradiated Cold-Worked Al-1050 and Al-6063 Alloys, Annual Report. IAEC, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/027/31027808.pdf, 1998 [Google Scholar]
  13. A. Munitz, A. Shtechman, C. Cotler, M. Talianker, S. Dahan, Mechanical properties and microstructure of neutron irradiated cold worked A1-6063 alloy, J. Nucl. Mater. 252, 79–88 (1998) [Google Scholar]
  14. G.T. Yahr, Prevention of nonductile fracture in 6061-T6 aluminum nuclear pressure vessel, J. Press. Vessel Technol. 119, 150 (1997) [Google Scholar]
  15. S. L'Haridon-Quaireau, K. Colas, B. Kapusta, B. Kapusta, M. Loyer-Prost, G. Gutierrez, D. Gosset, S. Delpech, Impact of ion and neutron irradiation on the corrosion of the 6061-T6 akuminium alloy, J. Nucl. Mater. 553, 153051 (2021) [Google Scholar]
  16. Y.S. Kim, Aluminium cladding oxide growth prediction for high flux research reactors, J. Nucl. Mater. 529, 151926 (2020) [Google Scholar]
  17. A. Mannheim, J.A.W. van Dommelen, M.G.D. Geers, Long-term microstructural evolution of tungsten under heat and neutron loads, Comput. Mater. Sci. 170, 109146 (2019) [Google Scholar]
  18. Y. Li, T.W. Morgan, J.A.W. van Dommelen, S. Antusch, M. Rieth, J.P.M. Hoefnagels, D. Terentyev, G. De Temmerman, K. Verbeken, M.G.D. Geers, Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma, Nucl. Fusion 60, 046029 (2020) [Google Scholar]
  19. M.A. Oude Vrielink, J.A.W. van Dommelen, M. Geers, Numerical investigation of the brittle-to-ductile transition temperature of rolled high-purity tungsten, Mech. Mater. 145, 103394 (2020) [Google Scholar]
  20. M.A. Oude Vrielink, J.A.W. van Dommelen, M.G.D. Geers, Computational analysis of the evolution of the brittle-to-ductile transition of tungsten under fusion conditions, Model. Simul. Mater. Sci. Engi. 29, 015005(2020) [Google Scholar]
  21. V. Shah, M.P.F.H.L. van Maris, J.A.W. van Dommelen, M.G.D. Geers, Experimental investigation of the microstructural changes of tungsten monoblocks exposed to pulsed high heat loads, Nucl. Mater. Energy 22, 100716 (2020) [Google Scholar]
  22. V. Shah, J.A.W. van Dommelen, E. Altstadt, A. Das, M.G.D. Geers, Brittle-ductile transition temperature of recrystallized tungsten following exposure to fusion relevant cyclic high heat load, J. Nucl. Mater. 541, 152416 (2020) [Google Scholar]
  23. M.A. Oude Vrielink, J.A.W. van Dommelen, M.G.D. Geers, Multi-scale fracture probability analysis of tungsten monoblocks under fusion conditions, Nucl. Mater. Energy 28, 101032 (2021) [Google Scholar]
  24. M.A. Oude Vrielink, V. Shah, J.A.W. van Dommelen, M.G.D. Geers, Modelling the brittle-to-ductile transition of high-purity tungsten under neutron irradiation, J. Nucl. Mater. 554, 153068 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.