Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 30
Number of page(s) 20
DOI https://doi.org/10.1051/epjn/2025026
Published online 30 June 2025
  1. https://single-market-economy.ec.europa.eu/industry/industrial-alliances/european-industrial-alliance-small-modular-reactors_en [Google Scholar]
  2. http://samofar.eu/ [Google Scholar]
  3. https://samosafer.eu/ [Google Scholar]
  4. https://www.mimosa-euratom.eu/ [Google Scholar]
  5. https://www.endurance-msr-project.eu/ [Google Scholar]
  6. O. Beneš, R.J.M. Konings, J. Chem. Thermodyn. 41, 1086 (2009) [CrossRef] [Google Scholar]
  7. O. Beneš, R.J.M. Konings, Thermodynamic evaluation of the NaCl-MgCl2-UCl3-PuCl3 system, J. Nucl. Mater. 375, 202 (2008) [CrossRef] [Google Scholar]
  8. E. Capelli, O. Beneš, R.J.M. Konings, J. Nucl. Mater. 501, 238 (2018) [CrossRef] [Google Scholar]
  9. A. Tosolin, P. Souček, O. Beneš, L. Luzzi, R.J.M. Konings, J. Nucl. Mater. 503, 171 (2018) [CrossRef] [Google Scholar]
  10. T. Dumaire, J.A. Ocadiz-Flores, R.J.M. Konings, A.L. Smith, A promising fuel for fast neutron spectrum Molten Salt Reactor: NaCl-ThCl4-PuCl3, Calphad 79, 102496 (2022) [CrossRef] [Google Scholar]
  11. R. Chieu, et al., Round Robin Measurements of Molten Salt Properties for a Common Batch of LiF-NaF-KF (FliNaK) and NaCl-KCl Eutectic Mixtures, Nuclear and Chemical Engineering Data (paper in preparation) [Google Scholar]
  12. O. Beneš, P. Gotcu-Freis, F. Schwörer, R.J.M. Konings, T.H. Fanghänel, J. Chem. Thermodyn. 43, 651 (2011) [CrossRef] [Google Scholar]
  13. A. Tosolin, E. Capelli, R. Konings, L. Luzzi, O. Beneš, J. Chem. Eng. Data 64, 3945 (2019) [CrossRef] [Google Scholar]
  14. O. Beneš, R.J.M. Konings, C. Kuenzel, A. Dockendorf, L. Vlahovic, J. Chem. Thermodyn. 41, 899 (2009) [CrossRef] [Google Scholar]
  15. J.Y. Colle, D. Freis, O. Beneš, R.J.M. Konings, ECS Trans. 46, 23 (2013) [CrossRef] [Google Scholar]
  16. E. Capelli, O. Beneš, J.Y. Colle, R.J.M. Konings, Phys. Chem. Chem. Phys. 17, 30110 (2015) [CrossRef] [Google Scholar]
  17. O. Beneš, E. Capelli, N. Vozárová, B. Cremer, R.J.M. Konings, Phys. Chem. Chem. Phys. 23, 9512 (2021) [CrossRef] [Google Scholar]
  18. O. Benes, R.J.M. Konings, Molten Salt Reactor Fuel and Coolant, in Comprehensive Nuclear Materials, 2nd edition, Volume 5, Chapter 5.18, Elsevier (2020) [Google Scholar]
  19. J.O. Flores, R.J.M. Konings, A.L. Smith, Using the Quasi-chemical formalism beyond the phase Diagram: Density and viscosity models for molten salt fuel systems, J. Nucl. Mater. 561, 153536 (2022) [CrossRef] [Google Scholar]
  20. M. Salanne, B. Rotenberg, S. Jahn, R. Vuilleumier, C. Simon, P.A. Madden, Including many-body effects in models for ionic liquids, Theor. Chem. Acc. 131, 1 (2012) [CrossRef] [Google Scholar]
  21. P.R. Hania, D.A. Boomstra, O. Benes, P. Soucek, A.J. de Koning, I. Bobeldijk, G.I.A. Lippens, Irradiation of thorium-bearing molten fluoride salt in graphite crucibles, Nucl. Eng. Design 375, 111094 (2021) [CrossRef] [Google Scholar]
  22. F. Bostelmann, G. Ilas, C. Celik, A.M. Holcomb, W.A. Wieselquist, Nuclear Data Assessment for Advanced Reactors, Oak Ridge National Laboratory Oak Ridge, TN 37831-6283, March 2022, NUREG/CR-7289, ORNL/TM-2021/2002, https://www.nrc.gov/docs/ML2206/ML22063 A060.pdf [Google Scholar]
  23. H. Pitois, D. Heuer, A. Laureau, E. Merle, M. Allibert, Design and optimization of a Chloride Molten Salt Fast Reactor, in Proceedings of the Internation Conference ICAPP 2023, Gyeongju, Korea (2023) [Google Scholar]
  24. L. Clot, E. Merle, A. Laureau, D. Heuer, L. Tillard, G. Senentz, New simulation controls for the MSR related neutronic evolution code REM, in Proceedings of the Internation Conference SNA+MC 2024, EPJ Web of Conferences 2024, Paris, France (2024), p. 05003 [Google Scholar]
  25. L. Mesthiviers, Ph.D. thesis, Grenoble Alpes University, Grenoble, France, 2022 [Google Scholar]
  26. M. Košťál, et al., A reference neutron field for measurement of spectrum averaged cross sections, Ann. Nucl. Energy 140, 107119 (2020) [CrossRef] [Google Scholar]
  27. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R.A. Forster, L. Casswell, MCNP Version 6.2 Release Notes, No. LA-UR-18-20808 (2018) [CrossRef] [Google Scholar]
  28. D.A. Brown, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [Google Scholar]
  29. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [Google Scholar]
  30. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, S. Chiba, N. Otuka, J.-C. Sublet, H. Iwamoto, K. Yamamoto, Y. Nagaya, K. Tada, C. Konno, N. Matsuda, K. Yokoyama, H. Taninaka, A. Oizumi, M. Fukushima, S. Okita, G. Chiba, S. Sato, M. Ohta, S. Kwon: Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol. 60, 1 (2023) [CrossRef] [Google Scholar]
  31. https://www.mimosa-euratom.eu/wp-content/uploads/2023/02/MIMOSA-D4.1-Report-on-definition-of-tested-salt-mixtures-and-candidate-structural-materials-VF.pdf [Google Scholar]
  32. S. Möller, et al., An MeV Proton Irradiation Facility: DICE, Materials 17, 3646 (2024) [CrossRef] [Google Scholar]
  33. Y. Wang, et al., Integrated high-throughput and machine learning methods to accelerate discovery of molten salt corrosion-resistant alloys, Adv. Sci. 9, 2200370 (2022) [CrossRef] [Google Scholar]
  34. P.R. Hania, D.A. Boomstra, O. Beneš, SaLIENT-01: preparation and start of irradiation of thorium-bearing molten fluoride salt in graphite crucibles, in Proc. Int. Nuclear Fuel Cycle Conf. and TOP FUEL 2019—Light Water Reactor Fuel Performance Conf. (2020) [Google Scholar]
  35. W. Zhou, et al., A simultaneous corrosion/irradiation facility for testing molten salt-facing materials, Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 440, 54 (2019) [CrossRef] [Google Scholar]
  36. V. Tiwari, et al., Thermodynamic assessment of the NaCl-CrCl2, NaCl-CrCl3, and FeCl2-CrCl2 pseudo-binary systems from describing the corrosion chemistry between molten salt fuel and steel, Nucl. Sci. Eng. 197, 3035 (2023) [CrossRef] [Google Scholar]
  37. F. Caruggi, A. Cammi, E. Cervi, A. Di Ronco, S. Lorenzi, Multiphysics modelling of gaseous fission products in the molten salt fast reactor, Nucl. Eng. Design 392, 111762 (2022) [CrossRef] [Google Scholar]
  38. E.M.A. Frederix, E.M.J. Komen, Simulation of noble metal particle growth and removal in the molten salt fast reactor, Nucl. Eng. Design 415, 112690 (2023) [CrossRef] [Google Scholar]
  39. E. Losa, M. Košťál, V. Rypar, B. Jánský, E. Novák, G. Grasso, M. Sarotto, F. Lodi, Neutron propagation experiments with a lead test section inserted in the core of the LR-0 reactor, Nucl. Eng. Design 335, 151 (2018) [CrossRef] [Google Scholar]
  40. V. Juříček, M. Košťál, E. Losa, T. Czakoj, Z. Matěj, F. Cvachovec, M. Schulc, J. Šimon, F. Mravec, V. Rypar, The application of silicon-filtered beam in the validation of iron cross sections by deep penetration experiments, J. Nucl. Eng. Radiat. Sci. 7, 022005 (2021) [CrossRef] [Google Scholar]
  41. A. Cammi, M. Cauzzi, L. Luzzi, A. Pini, DYNASTY: An experimental loop for the study of natural circulation with internally heated fluids, in Proceedings of the 12th Int. Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT) (2016), pp. 11–13 [Google Scholar]
  42. M. Tiberga, R.G.G. de Oliveira, E. Cervi, J.A. Blanco, S. Lorenzi, M. Aufiero, P. Rubiolo, Results from a multi-physics numerical benchmark for codes dedicated to molten salt fast reactors, Ann. Nucl. Energy 142, 107428 (2020) [CrossRef] [Google Scholar]
  43. A. Huxford, V.C. Leite, E. Merzari, L. Zou, V. Petrov, A. Manera, A hybrid domain overlapping method for coupling System Thermal Hydraulics and CFD codes, Ann. Nucl. Energy 189, 109842 (2023) [CrossRef] [Google Scholar]
  44. C. Fiorina, N. Habtemariam, S. Lorenzi, A. Scolaro, T. Guilbaud, A. Alfonsi, The functional mock-up interface as a unified framework to enable multi-scale, multi-fidelity and control-oriented simulations of nuclear reactors, in Proceedings of the Int. Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Niagara Falls, ON, Canada (2023), pp. 13–17 [Google Scholar]
  45. A. Laureau, D. Heuer, E. Merle-Lucotte, P.R. Rubiolo, M. Allibert, M. Aufiero, Transient coupled calculations of the Molten Salt Fast Reactor using the transient fission matrix approach, Nucl. Eng. Design 316, 112 (2017) [CrossRef] [Google Scholar]
  46. G.C. Masotti, A. Cammi, S. Lorenzi, M.E. Ricotti, Modeling and simulation of nuclear hybrid energy systems architectures, Energy Convers. Manag. 298, 117684 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.