Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 28
Number of page(s) 14
DOI https://doi.org/10.1051/epjn/2025025
Published online 20 June 2025
  1. W. Klein-Heßling, M. Sonnenkalb, D. Jacquemain, B. Clément, E. Raimond, H. Dimmelmeier, G. Azarian, G. Ducros, C. Journeau, L.E. Herranz, A. Schumm, A. Miassoedov, I. Kljenak, G. Pascal, S. Bechta, S. Güntay, M.K. Koch, I. Ivanov, A. Auvinen, I. Lindholm, Conclusions on severe accident research priorities. Ann. Nucl. Energy 74, 4 (2014), https://doi.org/10.1016/j.anucene.2014.07.015 [CrossRef] [Google Scholar]
  2. M. Pellegrini, L. Herranz, M. Sonnenkalb, T. Lind, Y. Maruyama, R. Gauntt, S. Mizokami, Main Findings, Remaining Uncertainties and Lessons Learned from the OECD/NEA BSAF Project, Nucl. Technol. 206, 1449 (2020), https://doi.org/10.1080/00295450.2020.1724731 [CrossRef] [Google Scholar]
  3. S. Gupta, L.E. Herranz, L.S. Lebel, M. Sonnenkalb, M. Pellegrini, C. Marchetto, Y. Maruyama, A. Dehbi, D. Suckow, T. Kärkelä. Integration of pool scrubbing research to enhance Source-Term calculations (IPRESCA) project – Overview and first results, Nucl. Eng. Design 404, 112189 (2023), ISSN 0029-5493, https://doi.org/10.1016/j.nucengdes.2023.112189 [CrossRef] [Google Scholar]
  4. USNRC, State-of-the-Art Reactor Consequence Analyses: Using decades of research and experience to model accident progression, mitigation, emergency response, and health effects. NUREG-BR-0359, 2021 [Google Scholar]
  5. L.E. Herranz, S. Beck, V.H. Sanchez-Espinosa, F. Mascari, S. Brumm, O. Coindreau, S. Paci, The EC MUSA Project on Management and Uncertainty of Severe Accidents: Main Pillars and Status, Energies 14, 4473 (2021), https://doi.org/10.3390/en14154473 [CrossRef] [Google Scholar]
  6. J. Ahad, A. Farooq, M. Ahmad, N. Irfan, K. Waheed, Review of Filtered Containment Venting System (FCVS) Eleven Years After Fukushima Accident, Nucl. Technol. 210, 1767 (2024), https://doi.org/10.1080/00295450.2024.2302716 [CrossRef] [Google Scholar]
  7. P. Chantereau, S. Diaz, A. Maros, A. Bleyer, A. Bentaib, Development and evaluation of a new concept of high efficiency passive autocatalytic recombiners, Transactions SMIRT-26, Berlin/Postdam, Germany, July 10–15 (2022) [Google Scholar]
  8. D. Magallon, A. Mailliat, J.-M. Seiler, K. Atkhen, H. Sjövall, S. Dickinson, J. Jakab, L. Meyer, M. Buerger, K. Trambauer, L. Fickert, B.R. Sehgal, Z. Hozer, J. Bagues, F. Martin-Fuentes, R. Zeyen, A. Annunziato, M. El-Shanawany, S. Guentay, C. Tinkler, B. Turland, L.E.H. Puebla, European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE), Nucl. Eng. Design 235, 309 (2005), https://doi.org/10.1016/j.nucengdes.2004.08.042. [CrossRef] [Google Scholar]
  9. J.-P. Van Dorsselaere, F. Bréchignac, F. Rosa, L.E. Herranz, I. Kljenak, A. Miassoedov, S. Paci, P. Piluso, Trends in severe accident research in Europe: SARNET network from Euratom to NUGENIA, EPJ Nucl. Sci. Technol. 3, 28 (2017), https://doi.org/10.1051/epjn/2017021. [CrossRef] [EDP Sciences] [Google Scholar]
  10. G.E. Wilson, B.E. Boyack, The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis, Nucl. Eng. Design, 1998. 186, 23 (1998) [Google Scholar]
  11. B.R. Shegal, SARNET, Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology (ELSEVIER, Academic Press, 2012), ISBN-10: 012388446, isbn-13: 978-012388446 [Google Scholar]
  12. OECD/NEA, “SAPIUM: Development of a Systematic Approach for Input Uncertainty Quantification of the Physical Models in Thermal-Hydraulic Codes”, Nuclear Safety NEA/CSNI/R(2020)16 May (2023) [Google Scholar]
  13. L.E. Herranz, F. Sánchez, S. Gupta, Validation Matrix for Pool Scrubbing Models, Nucl. Technol. (2022), https://doi.org/10.5445/IR/1000174165/v2) [Google Scholar]
  14. F. Gabrielli, L.E. Herranz, S. Paci, Proceedings of the 11th European Review Meeting on Severe Accidents Research (ERMSAR2024), https://doi.org/10.5445/IR/1000174165/v2 [Google Scholar]
  15. L. Chailan, L. Bosland, L. Carénini, J. Chambarel, F. Cousin, et al., “Overview of ASTEC integral code status and perspectives”, in 9th European Review Meeting on Severe Accident Research (ERMSAR2019), Prague, Czech Republic (March 2019) [Google Scholar]
  16. IAEA, Application of simulation techniques for accident management training in nuclear power plants, IAEA TECDOC SERIES, IAEA-TECDOC-1352 (May 2003) [Google Scholar]
  17. NEA, Informing Severe Accident Management Guidance and Actions for Nuclear Power Plants through Analytical Simulation, NEA/CSNI/R (2017)16 (2nd July 2018) [Google Scholar]
  18. ENSREG, Compilation of recommendations and suggestions – Peer review of stress tests performed on European nuclear power plants. (26th July 2012) [Google Scholar]
  19. S. Girard, V. Mallet, I. Korsakissok, A. Mathieu, Emulation and Sobol’ sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident, J. Geophys. Res.: Atmos. 121, 3484 (2016), https://doi.org/10.1002/2015JD023993. [CrossRef] [Google Scholar]
  20. S. Galushin, D. Grishchenko, P. Kudinov, Implementation of framework for assessment of severe accident management effectiveness in Nordic BWR, Reliability Eng. Syst. Safety 203, 107049 (2020), https://doi.org/10.1016/j.ress.2020.107049. [CrossRef] [Google Scholar]
  21. J. Brence, Report on the modelling strategy. ASSAS project (20th May 2024), https://cordis.europa.eu/project/id/101059682/results [Google Scholar]
  22. I. Parrado-Rodriguez. Users’ expectations, simulator specifications. ASSAS project (27/02/2024), https://cordis.europa.eu/project/id/101059682/results [Google Scholar]
  23. L. Proffit, B. Poubeau, L. Chailan. Surrogate model in ASTEC code. Internship report, 2023 [Google Scholar]
  24. C. d’Alessandro, T. Lind, R. Périllat, G. Blondet, Preliminary strategies for training dataset generation and surrogate modelling of station blackout management measures in PWR, in 11th European Review Meeting on Severe Accident Research (ERMSAR2024), Stockholm, Sweden (May 2024), https://doi.org/10.5445/IR/1000174165 [Google Scholar]
  25. B. Poubeau, Y. Richet, L. Chailan, F. Mascari, et al. Horizon Euratom ASSAS project: can machine-learning make fast and accurate severe accident simulators a reality?, in 11th European Review Meeting on Severe Accident Research (ERMSAR2024), Stockholm, Sweden (May 2024), https://doi.org/10.5445/IR/1000174165 [Google Scholar]
  26. L. Espeholt, S. Agrawal, C. Sønderby, et al., Deep learning for twelve-hour precipitation forecasts, Nat Commun 13, 5145 (2022), https://doi.org/10.1038/s41467-022-32483-x. [CrossRef] [Google Scholar]
  27. A. Weyrauch, et al., ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers, in 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, Singapore (2024), pp. 1187–1194, https://doi.org/10.1109/CAI59869.2024.00212 [Google Scholar]
  28. C. Ghnatios, X. Kestelyn, G. Denis, V. Champaney, F. Chinesta, Learning data-driven stable corrections of dynamical systems–application to the simulation of the top-oil temperature evolution of a power transformer, Energies 16, 5790 (2023), https://doi.org/10.3390/en16155790 [CrossRef] [Google Scholar]
  29. P.D. Kingma, M. Welling, An Introduction to Variational Autoencoders, Found. Trends® Mach. Learn. 12, 307 (2019), http://dx.doi.org/10.1561/2200000056 [CrossRef] [Google Scholar]
  30. J. Brence, J. Tanevski, J. Adams, E. Malina, S. Džeroski, Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite, in Lecture Notes in Computer Science, edited by A. Appice, G. Tsoumakas, Y. Manolopoulos, S. Matwin, Discovery Science. DS 2020 (Springer, Cham, 2020), vol. 12323, https://doi.org/10.1007/978-3-030-61527-7_15 [Google Scholar]
  31. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378, 686 (2019), ISSN 0021-9991, https://doi.org/10.1016/j.jcp.2018.10.045 [NASA ADS] [CrossRef] [Google Scholar]
  32. L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G.E. Karniadakis, A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data, Comput. Methods Appl. Mech. Eng. 393, 114778 (2022), ISSN 0045-7825, https://doi.org/10.1016/j.cma.2022.114778 [CrossRef] [Google Scholar]
  33. K. Mohsen, A Review of Transfer Learning Algorithms [Research Report], Technische Universität München, 2017. ffhal-01575126 [Google Scholar]
  34. OpenMP Application Programming Interface, Version 5.1 November 2020, www.openmp.org [Google Scholar]
  35. J. Bac, E.M. Mirkes, A.N. Gorban, I. Tyukin, A. Zinovyev, Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation, Entropy 23, 1368 (19th October 2021), https://doi.org/10.3390/e23101368 [CrossRef] [Google Scholar]
  36. SMR Regulators’ Forum Pilot Project Report: Considering the Application of a Graded Approach, Defence-in-Depth and Emergency Planning Zone Size for Small Modular Reactors, January 2018 [Google Scholar]
  37. www.saspam-sa.eu [Google Scholar]
  38. Small Modular Reactors (LW-SMRs and AMRs) European projects, Co-funded by the Euratom Research and Training Programme, 19-09-2024, https://research-and-innovation.ec.europa.eu/system/files/2023-02/ec_rtd_smr-projects.pdf [Google Scholar]
  39. SASPAM-SA CORDIS: https://cordis.europa.eu/project/id/101059853 [Google Scholar]
  40. ZENODO: SASPAM-SA Community, https://zenodo.org/communities/saspam-sa/about [Google Scholar]
  41. SASPAM-SA, Milestone 2.1: Generic Data on Design 1 and Design 2, 2023 [Google Scholar]
  42. SASAPAM-SA, Deliverable 2.1: Fuel inventory of the iPWR, Design-1 and Design-2, 2024, https://doi.org/10.5281/zenodo.14052163 [Google Scholar]
  43. F. Gabrielli, et al., Analysis of postulated severe accidents in generic integral PWR small modular reactors in the frame of the Horizon Euratom SASPAM-SA project, in Proceedings of the 11th European Review Meeting on Severe Accident Research (ERMSAR2024), KTH, Stockholm, Sweden (2024) [Google Scholar]
  44. T. Lind, et al., SASPAM-SA: Assessment of the relevance and applicability of existing experimental databases to iPWR. Proceedings of the 11th European Review Meeting on Severe Accident Research (ERMSAR2024), KTH, Stockholm, Sweden, https://doi.org/10.5281/zenodo.12645051 [Google Scholar]
  45. M. Principato, et al., “In vessel melt retention 0d model for integral pressurized water reactors”, in Proceedings of the ERMSAR2024, Stockholm, Sweden (2024) [Google Scholar]
  46. SASPAM-SA. Deliverable 1.4: IVMR Conservative Analyses. Zenodo, https://doi.org/10.5281/zenodo.14052319 [Google Scholar]
  47. J. Stuckert, M. Grosse, M. Steinbrück, Results of the bundle test QUENCH-19 with FeCrAl claddings (Karlsruhe Institute of Technology, Germany, 2022) http://dx.doi.org/10.5445/IR/1000148370 [Google Scholar]
  48. F. Mascari et al., Horizon Euratom SASPAM-SA project: main ideas and first outcomes, in Proceedings of the International Conference on Small Modular Reactors and their Applications, 21–25 October 2024, Vienna, Austria (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.