Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/epjn/2025018 | |
Published online | 13 June 2025 |
- ASN, Qualification des outils de calcul scientifique utilisés dans la démonstration de sûreté nucléaire – 1re barrière, 07. 2017 [Google Scholar]
- A. Gandini, On transposition of experimental reactor data to reference design, Technical report, Comitato nazionale per la ricerca e per lo sviluppo dell’energia nucleare e delle energie alternative (1983) [Google Scholar]
- A. Gandini, Extended bias-factor data transposition method, Trans. Am. Nucl. Soc. 50, 11 (1985) [Google Scholar]
- P. Blaise, S. Cathalau, P. Fougeras, An application of sensitivity and representativity approach for the design of a 100% MOX BWR experimental program in ZPR, Ann. Nucl. Energy 163, 108566 (2021) [CrossRef] [Google Scholar]
- N. Dos Santos, P. Blaise, A. Santamarina, A global approach of the representativity concept: application on a high-conversion light water reactor MOX lattice case, in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) (Sun Valley, Idaho, USA, American Nuclear Society, LaGrange Park, IL, 2013), Vol. 5 [Google Scholar]
- G. Palmiotti, M. Salvatores, G. Aliberti, H. Hiruta, R. McKnight, P. Oblozinsky, W.S. Yang, A global approach to the physics validation of simulation codes for future nuclear systems, Ann. Nucl. Energy 36, 355 (2009) [CrossRef] [Google Scholar]
- M. Salvatores, G. Aliberti, G. Palmiotti, D. Rochman, P. Oblozinsky, M. Hermann, P. Talou, T. Kawano, L. Leal, A. Koning, I. Kodeli, Nuclear data needs for advanced reactor systems: a NEA Nuclear Science Committee initiative, in International Conference on Nuclear Data for Science and Technology (2007) [Google Scholar]
- P. Lopez, A. Bidaud, Bayesian transposition: a practical approach using nuclear reactor start up data, in ANS Winter Meeting (2021), pp. 942–945 [Google Scholar]
- V. Vallet, C. Vaglio-Gaudard, C. Carmouze, Application of the bias transposition method on PWR decay heat calculations with the DARWIN2.3 package, in GLOBAL 2017 International Nuclear Fuel Cycle Conference (Seoul, South Korea, 2017) [Google Scholar]
- K. Ivanov, M. Avramova, Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs – Volume I: Specification and Support Data for Neutronics Cases (Phase I) (OECD Publishing, Paris, 2013) [Google Scholar]
- L.N. Usachev, Equation for the value of neutrons, reactor kinetics and perturbation theory, in Proceedings of International Conference on Peaceful Uses of Nuclear Energy (1955) [Google Scholar]
- M. L. Williams, Perturbation Theory for Reactor Analysis, CRC Handbook of Nuclear Reactor Calculations (CRC Press, 1986) [Google Scholar]
- A. Gandini, A generalized perturbation method for bi-linear functionals of the real and adjoint fluxes, Sov. At. Energy 20, 755 (1967) [Google Scholar]
- L.N. Usachev, Perturbation theory for the breeding factor, and other ratios of a number of different processes in a reactor, Sov. At. Energy 15, 1255 (1963) [CrossRef] [Google Scholar]
- A. Calloo, COCAGNE: EDF new neutronic core code for ANDROMEDE calculation chain, in Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C) (Jeju, Korea, April 2017) [Google Scholar]
- E.M. Gelbard, Simplified spherical harmonics equations and their use in shielding problems, in ANS Winter Meeting (San Francisco, California, Dec. 1960), https://www.osti.gov/biblio/4809517 [Google Scholar]
- C. de Saint-Jean, P. Archier, B. Habert, D. Bernard, G. Noguere, J. Tommasi, P. Blaise, E. Dupont, M. Ishikawa, K. Sugino et al., Assessment of Existing Nuclear Data Adjustment Methodologies. A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee-Intermediate Report (2011) [Google Scholar]
- D. Siefman, M. Hursin, D. Rochman, S. Pelloni, A. Pautz, Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments, Eur. Phys. J. Plus 133, 429 (2018) [Google Scholar]
- C.R. Rao, Linear statistical inference and its applications, Volume 2 (Wiley, New York, 1973) [CrossRef] [Google Scholar]
- A. Gelman, J.-B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D. B. Rubin, Bayesian Data Analysis (Taylor & Francis Ltd, 2013) [Google Scholar]
- L. Clouvel, Uncertainty quantification of the fast flux calculation for a PWR vessel, Ph.D. Thesis, Université Paris Saclay (COmUE), 2019 [Google Scholar]
- V.V. Orlov, A.A. Van’Kov, A.I. Voropaev, Yu.A. Kazanskij, V.I. Matveev, V.M. Murogov, E.A. Khodarev, Problems of fast reactor physics related to breeding, At. Energy Rev. 18, 989 (1980) [Google Scholar]
- T. Frosio, T. Bonaccorsi, P. Blaise, Extension of Bayesian inference for multi-experimental and coupled problem in neutronics – a revisit of the theoretical approach, EPJ Nucl. Sci. Technol. 4, 19 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
- C.R. Weisbin, E.M. Oblow, J.H. Marable, R.W. Peelle, J.L. Lucius, Application of sensitivity and uncertainty methodology to fast reactor integral experiment analysis, Nucl. Sci. Eng. 66, 307 (1978) [CrossRef] [Google Scholar]
- E. Greenspan, Sensitivity functions for uncertainty analysis, in Advances in Nuclear Science and Technology, edited by J. Lewins and M. Becker (Springer, US, 1982), Vol. 14, pp. 193–246 [CrossRef] [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, H. Dokhane, A. Koning, How inelastic scattering stimulates nonlinear reactor core parameter behaviour, Ann. Nucl. Energy 112, 236 (2018) [CrossRef] [Google Scholar]
- R. Sanchez, J. Mondot, Z. Stankovski, A. Cossic, I. Zmijarevic, APOLLO2: a user oriented, portable, modular code for multigroup transport assembly calculations, Nucl. Sci. Eng. 100, 352 (1988) [CrossRef] [Google Scholar]
- J.-F. Vidal, O. Litaize, D. Bernard, A. Santamarina, New modelling of LWR assemblies using the APOLLO-2 code package, in Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C) (2007) [Google Scholar]
- R. MacFarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler, The NJOY nuclear data processing system, version 2012, Technical Report LA-UR-12-27079, National Los Alamos National Laboratory (LANL), 2012 [Google Scholar]
- N. Hfaiedh, A. Santamarina, Determination of the optimised SHEM mesh for neutron transport calculation, in Proceedings of International Conference on Mathematics and Computation, M&C (2005) [Google Scholar]
- L. Goldberg, J. Vujic, A. Leonard, R. Stachowski, The characteristics method in general geometry, Trans. Am. Nucl. Soc., 73, 173 (1995) [Google Scholar]
- A. Hébert, Applied Reactor Physics (Presses internationales Polytechnique, 2020) [CrossRef] [Google Scholar]
- A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T.D. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle, G. Noguère, J-M. Ruggiéri, O. Sérot, J. Tommasi, C. Vaglio, J-F. Vidal, The JEFF-3.1.1 Nuclear Data Library Validation Results from JEF-2.2 to JEFF-3.1.1, Technical report, Nuclear Energy Agency, 2009 [Google Scholar]
- A. Rizzo, G. Noguère, P. Tamagno, Private communication on COMAC-V2.1 identification sheet [Google Scholar]
- P. Archier, C. De Saint Jean, O. Litaize, G. Noguère, E. Privas, L. Berge, P. Tamagno, CONRAD evaluation code: development status and perspectives, Nucl. Data Sheets 118, 488 (2014) [CrossRef] [Google Scholar]
- C. De Saint Jean, P. Archier, G. Noguere, O. Litaize, C. Vaglio-Gaudard, D. Bernard, O. Leray. Estimation of multi-group cross section covariances of 235,238U, 239Pu, 241Am, 56Fe, 23Na and 27Al, in Proceedings of the PHYSOR2012 Conference, Knoxville, Tennessee, USA, 04 2012 (American Nuclear Society, LaGrange Park, IL, 2012) [Google Scholar]
- H. Hiruta, G. Palmiotti, M. Salvatores, R. ArcillaJr., P. Oblozinsky, R.D. McKnight, Few group collapsing of covariance matrix data based on a conservation principle, Nucl. Data Sheets 109, 2801 (2008) [CrossRef] [Google Scholar]
- A.J.M. Plompen et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [Google Scholar]
- J. Mondot, EPICURE: an experimental program devoted to the validation of the calculational schemes for plutonium recycling in PWRs, in International Conference on the Physics of Reactors, Physor90 (Marseille, France, 1990), Vol. 121, pp. 32–40 [Google Scholar]
- P. Fougeras, S. Cathalau, J. Mondot, P. Klenov, Optimization of a calculation scheme for the treatment of plutonium recycling in pressurized water reactors, Nucl. Sci. Eng. 121, 32 (1995) [CrossRef] [Google Scholar]
- N. Dos Santos, Optimisation de l’approche de représentativité et de transposition pour la conception neutronique de programmes expérimentaux dans les maquettes critiques, Ph.D. Thesis, Université Grenoble Alpes, 2013 [Google Scholar]
- P. Blaise, O. Litaize, J.-F. Vidal, A. Santamarina, Qualification of the French APOLLO2.8/CEA2005V4 code package on absorber clusters in 17×17 PWR type lattices through the CAMELEON program, in International Conference on the Physics of Reactors, Physor2010 (Pittsburgh, 2010) [Google Scholar]
- A. Santamarina, C. Vaglio-Gaudard, P. Blaise, J.-C. Klein, N. Huot, O. Litaize, N. Thiollay, J.-F. Vidal, The PERLE experiment for the qualification of PWR heavy reflectors, in International Conference on the Physics of Reactors, Physor2008 (Interlaken, Switzerland, 2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.