Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 11
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2025008
Published online 24 April 2025
  1. L. Su, Y.M. Yang, B. Bednarz, et al., ARCHERRT – A photon-electron coupled Monte Carlo dose computing engine for GPU: Software development of and application to helical tomotherapy, Med. Phys. 41, 071709 (2014) [CrossRef] [Google Scholar]
  2. T. Liu, X.G. Xu, C.D. Carothers, Comparison of two accelerators for Monte Carlo radiation transport calculations, NVIDIA Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: A case study for X-ray CT imaging dose calculation, Ann. Nucl. Energy 82, 230 (2015) [CrossRef] [Google Scholar]
  3. X.G. Xu, T.Y. Liu, L. Su, et al., ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments, Ann. Nucl. Energy 82, 2 (2015) [Google Scholar]
  4. J.T. Goorley, M.R. James, T.E. Booth, et al., Initial MCNP6 Release Overview – MCNP6 version 1.0. LA-UR-13-22934 (Los Alamos National Laboratory, 2013) [CrossRef] [Google Scholar]
  5. H.G. Hughes, R.E. Prael, R.C. Little, MCNPX-The LAHET/MCNP Code Merger. XTM-RN(U) 97-012 (Los Alamos National Laboratory, 1997) [Google Scholar]
  6. W.R. Nelson, H. Hirayama, D.W.O. Rogers, The EGS4 Code System. SLAC-265-UC-32 (Stanford Linear Accelerator Center, 1985) [CrossRef] [Google Scholar]
  7. S. Agostinelli, J. Allison, K. Amako, et al., GEANT4 – A simulation toolkit, Nucl. Instrum. Meth. Phys. Res. 506, 250 (2003) [CrossRef] [Google Scholar]
  8. F. Salvat, J.M. Fernandez-Varea, J. Sempau, PENELOPE – A Code System for Monte Carlo Simulation of Electron and Photon Transport (NEA Data Bank, Workshop Proceeding, Barcelona, 2006) [Google Scholar]
  9. G. Battistoni, S. Muraro, P.R. Sala, et al., The FLUKA code: Description and benchmarking Proc. of the Hadronic Shower Simulation Workshop, AIP Conf. Proc. 896, 50 (2007) [CrossRef] [Google Scholar]
  10. E. Brun, F. Damian, C.M. Diop, et al., TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  11. X. Jia, X. Gu, Y.J. Graves, et al., GPU-based fast Monte Carlo simulation for radiotherapy dose calculation, Phys. Med. Biol. 56, 7017 (2011) [CrossRef] [Google Scholar]
  12. Y. Wang, T.R. Mazur, O. Green, et al., A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model, Med. Phys. 43, 4040 (2016) [CrossRef] [Google Scholar]
  13. X. Jia, J. Schümann, H. Paganetti, et al., GPU-based fast Monte Carlo dose calculation for proton therapy, Phys. Med. Biol. 57, 7783 (2012) [CrossRef] [PubMed] [Google Scholar]
  14. S. Hissoiny, B. Ozell, H. Bouchard, et al., GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform, Med. Phys. 38, 754 (2011) [CrossRef] [Google Scholar]
  15. J. Shan, H. Feng, D.H. Morales, et al., Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation, Med. Phys. 49, 6666 (2022) [CrossRef] [Google Scholar]
  16. G. Pratx, L. Xing, GPU computing in medical physics: A review, Med. Phys. 38, 2685 (2011) [CrossRef] [Google Scholar]
  17. D.P. Adam, T. Liu, P.F. Caracappa, et al., New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy, Med. Phys. 47, 2537 (2020) [CrossRef] [Google Scholar]
  18. B. Cheng, Y. Xu, S. Li, et al., Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC, Med. Phys. 50, 3172 (2023) [CrossRef] [Google Scholar]
  19. S. Li, B. Cheng, Y. Wang, et al., A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy, J. Appl. Clin. Med. Phys. 25, e14208 (2024) [CrossRef] [Google Scholar]
  20. D. Yan, F. Vicini, J. Wong, et al., Adaptive radiation therapy, Phys. Med. Biol. 42, 123 (1997) [CrossRef] [Google Scholar]
  21. H. Paganetti, P. Botas, G.C. Sharp, et al., Adaptive proton therapy, Phys. Med. Biol. 66, 22TR01 (2021) [CrossRef] [Google Scholar]
  22. Z. Peng, H. Shan, T. Liu, et al., MCDNet – A denoising convolutional neural network to accelerate Monte Carlo radiation transport simulations: A proof of principle with patient dose from X-ray CT imaging, IEEE Access 7, 76680 (2019) [CrossRef] [Google Scholar]
  23. Z. Peng, H. Shan, T. Liu, et al., Deep learning for accelerating Monte Carlo radiation transport simulation in intensity-modulated radiation therapy, arXiv preprint arXiv:1910.07735 (2019) [Google Scholar]
  24. U. Javaid, K. Souris, D. Dasnoy, et al., Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net, Med. Phys. 46, 5790 (2019) [CrossRef] [Google Scholar]
  25. T. Bai, B. Wang, D. Nguyen, et al., Deep dose plugin: Towards real-time Monte Carlo dose calculation through a deep learning-based denoising algorithm, Mach. Learn.: Sci. Technol. 2, 025033 (2021) [CrossRef] [Google Scholar]
  26. Z. Peng, Y. Li, Y. Xu, et al., Development of a GPU-accelerated Monte Carlo dose calculation module for nuclear medicine, ARCHER-NM: Application for PET/CT imaging procedure, Phys. Med. Biol. 67, 06NT02 (2022) [CrossRef] [Google Scholar]
  27. G. Zhang, X. Chen, J. Dai, et al., A plan verification platform for online adaptive proton therapy using deep learning-based Monte–Carlo denoising, Phys. Med. 103, 18 (2022) [CrossRef] [Google Scholar]
  28. X. Zhang, H. Zhang, J. Wang, et al., Deep learning-based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy, Med. Phys. 50, 7314 (2023) [CrossRef] [Google Scholar]
  29. IAEA, Advances in Boron Neutron Capture Therapy (International Atomic Energy Agency, Vienna, 2023) [Google Scholar]
  30. D. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  31. D. Low, W. Harms, S. Mutic, et al., A technique for the quantitative evaluation of dose distributions, Med. Phys. 25, 656 (1998) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.