Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 10, 2024
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 83 | |
DOI | https://doi.org/10.1051/epjn/2024010 | |
Published online | 07 October 2024 |
- A. Bevilacqua, J.P. Carreton, A. Guskov, T. Hornebrant, C. Jones, Y. Kumano, et al. Storage of Spent Nuclear Fuel, specific safety guide. (International Atomic Energy Agency, IAEA, Vienna, Austria, 2020), SSG-15, Rev. 1. https://www-pub.iaea.org/MTCD/publications/PDF/P1882_web.pdf [Google Scholar]
- J.R Lamarsh, Introduction to Nuclear Reactor Theory (Addison-Wesley Publishing Company, 1966) [Google Scholar]
- C. Poinssot, P. Toulhoat, J.P. Grouiller, J. Pavageau, J.P. Piron, M. Pelletier, et al. Synthesis on the Long Term Behavior of Spent Nuclear Fuel - Volume 1 and 2 (Commissariat à l’Energie Atomique, CEA, 2001). https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/009/33009840.pdf [Google Scholar]
- B. Duchemin, c. Nordborg, Decay heat calculation, An international Nuclear code comparison. Nuclear Energy Agency, NEACRP-319 and NEANDC-275; 1990. https://inis.iaea.org/collection/NcLCollectionStore/_Public/22/009/22009691.pdf [Google Scholar]
- NEA committees on reactor physics and nuclear data. Proceedings of a specialists’ meeting on Data for Decay Heat Predictions (Nuclear Energy Agency, NEACRP-302 and NEANDC-245, 1987). https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/neacrp-l-1987-302.pdf [Google Scholar]
- c. Nordborg, NEACRP/NEANDC Task Force Meeting on Decay Heat Predictions (Nuclear Energy Agency, EACRP-A-1039 and NEANDC-A- 26, 1989). https://www.oecd-nea.org/upload/docs/application/pdf/2020-07/neacrp-a-1989-1039.pdf. [Google Scholar]
- M.A Kellett, A.L. Nichols, O. Bersillon, H. Henriksson, R. Jacqmin, B. Roque, et al. Assessment of Fission Product Decay Data for Decay Heat calculations, A report by the Working Party on International Evaluation co-operation of the NEA Nuclear Science committee, 2007. ISBN 978-92-64-99034-0. [Google Scholar]
- Decay heat of spent nuclear fuels, Accessed: 2022-09-01, https://www.oecd-nea.org/download/wpncs/sg12/ [Google Scholar]
- K. Asfaw, K. Kamimura, T. Nakajima, S. Schultz, P. Shaw, K. Sim, et al. Design of the Reactor core for Nuclear Power Plants (International Atomic Energy Agency, IAEA, Vienna, Austria, 2019). https://www-pub.iaea.org/MTCD/publications/PDF/PUB1859web.pdf [Google Scholar]
- S.J Baik, J. Beard, E. courtin, N. Fil, M. Gasparini, c. Jackson, et al. Design of the Reactor coolant System and Associated Systems for Nuclear Power Plants (International Atomic Energy Agency, IAEA, Vienna, Austria, 2020). https://www-pub.iaea.org/MTCD/publications/PDF/PUB1878_web.pdf [Google Scholar]
- G. Ilas, J. Burns, LWR Decay Heat Analysis with SCALE 6.3 and ENDF/B-VIII.0 Nuclear Data Libraries (International conference TopFuel 2021, Santander, Spain, October 2021), pp. 24–28 [Google Scholar]
- H. Akkurt, H. Liljenfeldt, G. Ilas, S. Baker, Phenomena Identification and Ranking Table (PIRT) for Decay Heat (Electric Power Research Institute, EPRI, USA, 2020), 3002018440 [Google Scholar]
- T. Yamamoto, D. Iwahashi, Validation of decay heat calculation results of ORIGEN2.2 and cASMO5 for light water reactor fuel, J. Nucl. Sci. Technol. 53, 2108 (2016). https://doi.org/10.1080/00223131.2016.1183528 [CrossRef] [Google Scholar]
- A. Shama, D. Rochman, S. caruso, A. Pautz, Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and cASMO5, Ann. Nucl. Energy. 165, 108758 (2022). https://www.sciencedirect.com/science/article/pii/S0306454921006344 [CrossRef] [Google Scholar]
- P. Jansson, M. Bengtsson, U. Bäckström, F. Àlvarez-Velarde, D. calic, S. caruso, et al. Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat, Nucl. Sci. Eng. 196, 1125 (2022) [CrossRef] [Google Scholar]
- F. Laugier, c. Diop, S. Ebalard, c. Garzenne, A. Sargeni, A new decay heat standard proposition based on a technical specifications guide for computation codes. In: Proc. Int. conf. PHYSOR 2008, Interlaken, Switzerland, 14–19 September (2008) [Google Scholar]
- J.c Wagner, Spent Nuclear Fuel Disposition (Idaho National Laboratory, USA, 2016) [Google Scholar]
- IAEA, Management of Spent Fuel from Nuclear Power Reactors Learning from the Past, Enabling the Future (International Atomic Energy Agency, Vienna, Austria, 2019). http://www.iaea.org/bulletin [Google Scholar]
- NWMO, What is used Nuclear Fuel? (Nuclear Waste Management Organization, Ontario, canada, 2022). https://www.nwmo.ca [Google Scholar]
- ASTM american standards, Standard Guide For characterization Of Spent Nuclear Fuel In Support Of Interim Storage, Transportation And Geologic Repository Disposal (American Nuclear Society; 2021), ASTM c1682-21. https://webstore.ansi.org/Standards/ASTM/astmc168221 [Google Scholar]
- IAEA. Joint convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (IAEA International Law Series, 2006) [Google Scholar]
- DIN Standards committee Materials Testing, calculation of the decay power in nuclear fuels of light water reactors - Part 1: Uranium oxide nuclear fuel for pressurized water reactors, English translation of DIN 25463-1:2014-02 (DIN Standards committee Materials Testing, Germany, 2014) [Google Scholar]
- FSC-6910, Decay Heat. In: DOE Fundamentals Handbook, No. DOE-HDBK-1012/2-92 in 1 (U.S., Department of Energy, 1992) [Google Scholar]
- Technical committee ISO/TC 85, Nuclear energy, Sub-committee SC 3, Power Reactor Technology, Nuclear Energy - Light Water Reactors - calculation of the Decay Heat Power in Nuclear fuels (ISO International Standard, 1992) [Google Scholar]
- DIN Standards committee Materials Testing. calculation of the Decay Power in Nuclear Fuels of Light Water Reactors - Part 2: Mixed-uranium-plutonium oxide (MOX) nuclear fuel for pressurized water reactors, English translation of DIN 25463-2:2014-02 (DIN Standards committee Materials Testing, Germany, 2014) [Google Scholar]
- American Nuclear Society Standards committee Working Group ANS-5 1. Decay Heat Power in Light Water Reactors (American Nuclear Society, 2014), ANSI/ANS-5.1-2014 [Google Scholar]
- Technical committee ISO/TC 85, Nuclear energy, Sub-committee SC 6, Power Reactor Technology. Nuclear Energy - Light Water reactors - calculation of the Decay Heat Power in Nuclear Fuels (ISO International Standard, 2022), ISO 10645:2022 [Google Scholar]
- A. Sotomayor-Rivera, Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation (U.S. Nuclear Regulatory commission, USA, 2018), US NRC Regulatory Guide 3.54, Rev.2 [Google Scholar]
- Fuel Burnup, Accessed: 2022-06-23, https://www.nuclear-power.com/nuclear-power/reactor-physics/reactor-operation/fuel-burnup/ [Google Scholar]
- M. Aissa, Fuel Burnup Plant Records: Generation and Accuracy, In: Proceedings of International Workshop on Advances in Applications of Burnup credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition, 27-30 October. cordoba, Spain (2009). https://www.oecd-nea.org/science/wpncs/buc/workshop-2009/ [Google Scholar]
- B.B Bevard, J.c. Wagner, c.V. Parks, M. Aissa, Review of Information for Spent Nuclear Fuel Burnup confirmation (Oak Ridge National Laboratory, USA, 2009), NUREG/cR-6998 [Google Scholar]
- F. Michel-Sendis, I. Gauld, J.S. Martinez, c. Alejano, M. Bossant, D. Boulanger, et al. SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110, 779 (2017). https://www.sciencedirect.com/science/article/pii/S0306454917302104 [CrossRef] [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, R. Ichou, J. Taforeau, et al. Analysis for the ARIANE GU3 sample: nuclide inventory and decay heat, EPJ Nucl. Sci. Technol. 7, 14 (2021). https://doi.org/10.1051/epjn/2021013 [CrossRef] [EDP Sciences] [Google Scholar]
- D. Rochman, F. Álvarez-Velarde, R. Dagan, L. Fiorito, S. Häkkinen, M. Kromar, et al., On the estimation of nuclide inventory and decay heat: a review from the EURAD European project, EPJ Nucl. Sci. Technol. 9, 14 (2023). https://doi.org/10.1051/epjn/2022055 [CrossRef] [EDP Sciences] [Google Scholar]
- K.S Smith, S. Tarves, T. Bahadir, R. Ferrer, Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty (Electric Power Research Institute, EPRI, USA, 2011), p. 1022909 [Google Scholar]
- S. Børresen, A. Becker, calculation of neutron emission from spent LWR fuel assemblies: SNF method and validation, In: International conference on Reactor Physics, Nuclear Power: A Sustainable Resource, September 14-19. Interlaken, Switzerland (2008) [Google Scholar]
- P. Schillebeeckx, M. Verwerft, P. Romojaro, G. Žerovnik, N. Messaoudi, G. Alaerts, et al. An absolute measurement of the neutron production rate of a spent nuclear fuel sample used for depletion code validation, Front. Energy Res. 11, 1162367 (2023). https://www.frontiersin.org/articles/10.3389/fenrg.2023. [CrossRef] [Google Scholar]
- K. Way, E.P. Wigner, The Rate of Decay of Fission Products, Phys. Rev. 73, 1318 (1948). https://link.aps.org/doi/10.1103/PhysRev.73.1318 [CrossRef] [Google Scholar]
- Y. Liu, B. Kochunas, W. Martin, T. Downar, Delayed fission energy effect on LWR normal operation and transients, Ann. Nucl. Energy 128, 84 (2019). https://www.sciencedirect.com/science/article/pii/S0306454918307126 [CrossRef] [Google Scholar]
- O.W Hermann, c.V. Parks, J.P. Renier, Technical Support for a Proposed Decay Heat Guide Using Sas2H/Origen-S Data (Oak Ridge National Laboratory, 1994), NREG/cR-5625, ORNL-6698. https://www.osti.gov/servlets/purl/43752 [Google Scholar]
- U.S NRC, Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation, U.S. Nuclear Regulatory commission, USA, US NRC Regulatory Guide 3.54, Rev.1., 1999. https://www.nrc.gov/docs/ML0037/ML003761667.pdf [Google Scholar]
- I.c Gauld, J.c. Ryman, Nuclide Importance to criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel (Oak Ridge National Laboratory, USA, 2001) [Google Scholar]
- G. Žerovnik, P. Schillebeeckx, K. Govers, A. Borella, D. Ćalić, L. Fiorito, et al. Observables of interest for the characterisation of Spent Nuclear Fuel (Publications Office of the European Union, Luxembourg, 2018), EUR 29301 EN, ISBN 978-92-79-90347-2 [Google Scholar]
- A. Tobias, Decay heat, Prog. Nucl. Energy 5, 1 (1980). https://www.sciencedirect.com/science/article/pii/0149197080900025 [CrossRef] [Google Scholar]
- F. Storrer, Review of Decay Heat Predictions and Standards (Meeting of the JEF Working Group on Radioactive Decay and Fission Yield Data, BNFL Office, London, UK., 1994), JEF/DOC-473 [Google Scholar]
- K. Shure, Decay Heat and Decay Rate of Actinides in Highly Neutron-Irradiated Uranium Initially of High 235U content, Nucl. Sci. Eng. 85, 51 (1983). https://doi.org/10.13182/NSE83-A17151 [CrossRef] [Google Scholar]
- T.R England, W.B. Wilson, TMI-2 Decay Power: LASL Fission-Product and Actinide; Decay Power calculations for the President’s commission on the Accident at Three Mile Island TMI-2 (Los Alamos Scientific Laboratory, NM, USA, 1979) LA-8041-MS. https://inis.iaea.org/collection/NCLCollectionStore/_Public/11/528/11528011.pdf [Google Scholar]
- H. Smith, The Relative Significance of Actinide Decay Heat for Nuclear Fuel characterization, In: Transactions of the American Nuclear Society, Vol. 85, 2001 Winter Meeting, Reno, Nevada (2001), p. 318 [Google Scholar]
- K. Tasaka, J. Katakura, T. Yoshida, T. Kato, R. Nakasima, Recommended values of decay heat power and method to utilize the data (Japan Atomic Energy Research Institute, 1991), JAERI-M 91-034 [Google Scholar]
- J.H Mairs, S. Nair, The Inventories of Actinides and Fission Product Arising in Spent Nuclear Fuel: Results Using the Rice code (Berkeley Nuclear Labs, USA, 1979), cEGB-RD-B-N-4579 [Google Scholar]
- D.H Stoddard, E.L. Albenesius, Radiation Properties of 238Pu Produced for Isotopic Power Generators (Savannah River Laboratory, USA, 1965), TID-4500. https://www.osti.gov/servlets/purl/4616364 [Google Scholar]
- I.c Gauld, B.D. Murphy, Proposed Expansion of Regulatory Guide 3.54-Decay Heat Generation in an Independent Spent Fuel Storage Installation (Oak Ridge National Laboratory, 2010) ORNL/TM-2007/231 [Google Scholar]
- M.W Francis, c.F. Weber, M.T. Pigni, I.c. Gauld, Reactor Fuel Isotopics and code Validation for Nuclear Applications (Oak Ridge National Laboratory, USA, 2014), ORNL/TM-2014/464 [Google Scholar]
- K. Debertin, H. Ramthun, FPND needed for Nondestructive Burnup Determination, In: Proceedings of a panel on fission product nuclear data organized by the International Atomic Energy Agency, November 26-30. Bologna, Italy (1974). https://www-nds.iaea.org/publications/tecdocs/iaea-0169-volume3.pdf [Google Scholar]
- D. Rochman, J. Taforeau, T. Simeonov, A. Shama, comparison of calculated and measured spent nuclear fuel decay heat with cASMO5, SNF and standard methods, Nucl. Eng. Design 410, 112392 (2023). https://www.sciencedirect.com/science/article/pii/S0029549323002418 [CrossRef] [Google Scholar]
- B.L Broadhead, M.D. Dehart, J.c. Ryman, J.S. Tang, c.V. Parks, Investigation of Nuclide Importance to Functional Requirements Related to Transport and Long-Term Storage of LWR Spent Fuel (Oak Ridge National Laboratory, 1995), ORNL/TM-12742 [Google Scholar]
- K. Tasaka, J. Katakura, T. Yoshida, Recommended values of decay heat power and method to utilize the data (Japan Atomic Energy Research Institute (JAERI), Japan, 1991), JAERI-M 91-034, NEANDC(J)-161/U and INDC(JPN)-149/L [Google Scholar]
- A.J.M. Plompen, O. cabellos, c. De Saint Jean, M. Fleming, A. Algora, M. Angelone, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020). https://doi.org/10.1140/epja/s10050-020-00141-9 [CrossRef] [Google Scholar]
- F.P Roberts, The Radiation characteristics of Reactor Produced Rhodium, Palladium, Ruthenium and Technetium (Pacific Northwest Laboratory, Richland, Washington, USA, 1972), BNWL-1693 [Google Scholar]
- Subcommittee on Radiochemistry; Subcommittee on the Use of Radioactivity Standards; committee on Nuclear Science; National Research council, Users’ Guide for Radioactivity Standards (The National Academies Press, Washington, DC, 1974). https://nap.nationalacademies.org/catalog/20179/users-guide-for-radioactivity-standards [Google Scholar]
- S. Nakamura, H. Harada, T. Katoh, Measurement of Thermal Neutron capture cross Section and Resonance Integral of the Reaction 133cs(n,γ) 134m, 134gcs, J. Nucl. Sci. Technol. 36, 847 (1999). https://doi.org/10.1080/18811248.1999.9726275 [CrossRef] [Google Scholar]
- B.F Rider, J.L. Russell Jr., D.W. Harris, J.P. Peterson Jr., The Determination of Uranium Burnup in MWd/ton (Vallecitos Atomic Laboratory General Electric company Pleasanton, california, 1960), GEAP-3373. https://www.osti.gov/servlets/purl/4156626 [Google Scholar]
- D. Harris, J. Epstein, Properties of Selected Radioisotopes (NASA Goddard Space Flight center Greenbelt, MD, US, 1968), NASA SP-7031. https://ntrs.nasa.gov/citations/19680020487 [Google Scholar]
- Practices and Developments in Spent Fuel Burnup credit Applications. No. 1378 in TECDOC Series (cD-ROM). Vienna, Austria: International Atomic Energy Agency, 2003 [Google Scholar]
- S.E Skutnik, Proposed re-evaluation of the 154Eu thermal (n,γ) capture cross-section based on spent fuel benchmarking studies, Ann. Nucl. Energy 99, 80 (2017). https://www.sciencedirect.com/science/article/pii/S0306454916305710 [CrossRef] [Google Scholar]
- Nucleonica GmbH, Nucleonica Nuclear Science Portal, Version 3.0.269, Karlsruhe, 2007. www.nucleonica.com [Google Scholar]
- S. Untermyer, J.T. Weills, Heat Generation in Irradiated Uranium (Argonne National Laboratory, 1953), ANL-4790 [Google Scholar]
- S.E Beall, An experimental determination of fission product heating after shutdown of the low intensity training reactor (Oak Ridge National Laboratory, USA, 1951), ORNL-1075. https://www.osti.gov/servlets/purl/4346759 [Google Scholar]
- J.W Roddy, J.c. Mailen, Radiological characteristics of Light Water Reactor Spent Fuel: a litterature survey of experimental data (Oak Ridge National Laboratory, USA, 1987), ORNL/TM-10105 [Google Scholar]
- F. Schmittroth, A comparison of Measured and calculated Decay Heat for Spent Fuel Near 2.5 years cooling Time (Hanford Engineering Development Laboratory, USA, 1980) TC-1759 [Google Scholar]
- M. McKinnon, c. Heeb, J. creer, Decay Heat Measurements and Predictions of BWR Spent Fuel (Electric Power Research Institute (EPRI), USA, 1986) NP-4619 [Google Scholar]
- M.A McKinnon, J.W. Doman, R.J. Guenther, J.M. creer, c.E. King, in cask Handling Experience and Decay Heat, Heat transfer, and Shielding data (Pacific Northwest Laboratory, Richland, Washington, USA, 1986), Vol. 1 [Google Scholar]
- L.E Wiles, N.J. Lombardo, c.M. Heeb, U.P. Jenquin, T.E. Michener, c.L. Wheeler, et al. in Pre- and Post-test Decay Heat, Heat transfer, and Shielding analysis (Pacific Northwest Laboratory, Richland, Washington, USA, 1986), Vol. 2 [Google Scholar]
- F. Schmittroth, ORIGEN2 calculations of PWR Spent Fuel Decay Heat compared with calorimeter Data (Hanford Engineering Development Laboratory, USA, 1984), HEDL-TME 83-32 (UC-85) [Google Scholar]
- S.B Gunst, D.E. conway, J.c. connor, Measured and calculated Rates of Decay Heat in Irradiated 235U, 233U, 239Pu, and 232Th, Nucl. Sci. Eng. 56, 241 (1975). https://doi.org/10.13182/NSE75-A26738 [CrossRef] [Google Scholar]
- F. Sturek, L. Agrenius, Measurements of decay heat in spent nuclear fuel at the Swedish interim storage facility, clab (Svensk Kärnbränslehantering AB (SKB), Sweden, 2006), R-05-62 [Google Scholar]
- I.c Gauld, G. Ilas, B.D. Murphy, c.F. Weber, Validation of SCALE 5 decay heat predictions for LWR Spent Nuclear Fuel (Oak Ridge National Laboratory, USA, 2010) ORNL/TM-2008/015 and NUREG/cR-6972 [Google Scholar]
- B.D Murphy, I.c. Gauld, Spent fuel Decay Heat Measurements Performed at the Swedish central Interim Storage Facility (Oak Ridge National Laboratory, USA, 2010) ORNL/TM-2008/016 and NUREG/cR-6971 [Google Scholar]
- G. Ilas, I.c. Gauld, H. Liljenfeldt, Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE, Nucl. Eng. Design 273, 58 (2014). https://www.sciencedirect.com/science/article/pii/S0029549314001514 [CrossRef] [Google Scholar]
- P. Jansson, M. Bengtsson, U. Bäckström, K. Svensson, M. Lycksell, A. Sjöland, Data from calorimetric decay heat measurements of five used PWR 17x17 nuclear fuel assemblies, Data Brief 28, 104917 (2020) [CrossRef] [Google Scholar]
- T. Aoyama, S. Nose, S. Suzuki, Measurement and analysis of decay heat of fast reactor spent fuel, In: the proceedings of the 1998 Symposium of nuclear data, november 19-20, JAERI, Tokay, Japan, JAERI-conf 99-002, INDC(JPN)-182/U (1999), p. 84 [Google Scholar]
- S. Maeda, S. Nose, T. Aoyama, Measurement and analysis of JOYO MK-II spent MOX fuel decay heat(2) (JNDC, Tokai-mura, Japan, 2001) JNC TN9400 2001-031 [Google Scholar]
- S. Maeda, T. Aoyama, Decay Heat of Fast Reactor Spent Fuel, J. Nucl. Sci. Technol. 39, 1104 (2002). https://doi.org/10.1080/00223131.2002.10875294 [CrossRef] [Google Scholar]
- S. Maeda, T. Sekine, T. Aoyama, Measurement and analysis of decay heat of fast reactor spent MOX fuel, Ann Nucl. Energy 31, 1119 (2004). https://www.sciencedirect.com/science/article/pii/S0306454903003049 [CrossRef] [Google Scholar]
- G. Gillet, M. Favet, M. Paulin, Measurement of Decay Heat and comparison with Predictions, Nucl. Sci. Eng. 106, 94 (1990). https://doi.org/10.13182/NSE90-A23763 [CrossRef] [Google Scholar]
- J.c Jaboulay, S. Bourganel, Analysis of MERCI Decay Heat Measurement for PWR UO2 Fuel Rod. Nucl. Technol. 177, 73 (2012). https://doi.org/10.13182/NT12-A13328. [CrossRef] [Google Scholar]
- c. Fiche, Mesure de la puissance résiduelle totale émise par les produits de fission thermique de 239Pu et 233U (commissariat à l’Energie Atomique (CEA), 1976) NEACRP/L 212. https://www-nds.iaea.org/media/docs/fission/NEACRP-L-212(1976).pdf [Google Scholar]
- A. Vasile, B. Fontaine, M. Vanier, P. Gauthe, V. Pascal, G. Prulhiere, et al., The PHENIX Final Tests Revue Générale Nucléaire 6, 73 (2010) [Google Scholar]
- c. Blandin, S. Bourganel, L.G. d’Aillon, Merci - Mosaic: Experimental Tools for Residual Power Measurement in the Osiris Reactor, In: Proceedings of the 12th meeting of the International Group On Research Reactors. Beijing, china (2009). https://www.igorr.com/Documents/2009-BEIJING/BLANDIN.pdf [Google Scholar]
- L.G. d’Aillon, MOSAIC patent: Ex-reactor two phase transient nuclear calorimeter; Priority claim number & date: FR/2007/0058626, 2007, October 26 - International publication reference: WO/2009/053456 [Google Scholar]
- E. Brun, F. Damian, c.M. Diop, E. Dumonteil, F.X. Hugot, c. Jouanne, et al., TRIPOLI-4, CEA, EDF and AREVA reference Monte carlo code, Ann. Nucl. Energy 82, 151 (2015). https://www.sciencedirect.com/science/article/pii/S0306454914003843 [CrossRef] [Google Scholar]
- R. Sanchez, I. Zmijarevic, M. coste-Delclaux, E. Masiello, S. Santandrea, E. Martinolli, et al., APOLLO2 Year 2010, Nucl. Sci. Technol. 42, 474 (2010). https://www.koreascience.or.kr/article/JAKO201007535002887.page [Google Scholar]
- A. Tsilanizara, c.M. Diop, B. Nimal, M. Detoc, L. Lunéville, M. chiron, et al., DARWIN: An Evolution code System for a Large Range of Applications, J. Nucl. Sci. Technol. 37, 845 (2000). https://doi.org/10.1080/00223131.2000.10875009 [CrossRef] [Google Scholar]
- S. Lahaye, T.D. Huynh, A. Tsilanizara, comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse. EPJ Web conf. 111, 09002 (2016). https://doi.org/10.1051/epjconf/201611109002 [CrossRef] [EDP Sciences] [Google Scholar]
- J. Huyghe, V. Vallet, D. Lecarpentier, c. Reynard-carette, c. Vaglio-Gaudard, How to obtain an enhanced extended uncertainty associated with decay heat calculations of industrial PWRs using the DARWIN2.3 package, EPJ Nucl. Sci. Technol. 5, 8 (2019). https://doi.org/10.1051/epjn/2019002 [CrossRef] [EDP Sciences] [Google Scholar]
- K. Johnston, A calorimetric determination of fission product heating in fast reactor plutonium fuel. J. Nucl. Energy Parts A/B Reactor Sci. Technol. 19, 527 (1965). https://www.sciencedirect.com/science/article/pii/0368323065901321 [CrossRef] [Google Scholar]
- M. Fleming, J.c. Sublet, Validation of FISPACT-II, decay heat and inventory, predictions for fission events (UK Atomic Energy Authority, 2018) UKAEA-R(18)003. https://www-nds.iaea.org/media/docs/fission/UKAEA-R18003.pdf [Google Scholar]
- P.c Fisher, L.B. Engle, Delayed Gammas from Fast-Neutron Fission of Th232, U233, U235, U238, and Pu239, Phys. Rev. 134, B796 (1964). https://link.aps.org/doi/10.1103/PhysRev.134.B796 [CrossRef] [Google Scholar]
- A. McNair, F.J. Bannister, R.L.G. Keith, H.W. Wilson, A measurement of the energy released as kinetic energy of β-particles emitted in the radioactive decay of the fission products of 235U, J. Nucl. Energy 23, 73 (1969). https://www.sciencedirect.com/science/article/pii/0022310769900379 [CrossRef] [Google Scholar]
- L.R Bunney, D. Sam, Gamma-Ray Spectra of the Products of Thermal-Neutron Fission of 235U at Selected Times after Fission, Nucl. Sci. Eng. 39, 81 (1970). https://doi.org/10.13182/NSE70-A21173 [CrossRef] [Google Scholar]
- T.D MacMahon, R. Wellum, H.W. Wilson, Energy released by beta radiation following fission, Part I – 235U data, J. Nucl. Energy 24, 493 (1970). https://www.sciencedirect.com/science/article/pii/0022310770900286 [CrossRef] [Google Scholar]
- N. Tsoulfanidis, B.W. Wehring, M.E. Wyman, Measurements of Time-Dependent Energy Spectra of Beta Rays from Uranium-235 Fission Fragments, Nucl. Sci. Eng. 43, 42 (1971). [CrossRef] [Google Scholar]
- M. Lott, G. Lhiaubet, F. Dufreche, R. de Tourreil, Puissance résiduelle totale émise par les produits de fission thermique de 235U, J. Nucl. Energy 27, 597 (1973). https://www.sciencedirect.com/science/article/pii/0022310773900208 [CrossRef] [Google Scholar]
- B. Alam, J. Scobie, Measurements of the beta energy release rate at short times after fission in uranium-235, Ann. Nucl. Sci. Eng. 1, 573 (1974). https://www.sciencedirect.com/science/article/pii/0302292774900816 [CrossRef] [Google Scholar]
- S.J Friesenhahn, N.A. Lurie, N.c. Rogers, N. Vagelatos, 235U fission product decay heat from 1 to 105 seconds (Electric Power Research Institute, USA, 1976) EPRI NP-180 [Google Scholar]
- J.L Yarnell, P.J. Bendt, Decay heat from products of 235U thermal fission by fast response boil-off calorimetry (Los Alamos Scientific Laboratory, USA, 1977), LA-NUREG-6713 [Google Scholar]
- J.K Dickens, J.F. Emery, T.A. Love, J.W. Mcconnell, K.J. Northcutt, R.W. Peele, et al., Fission-Product Energy Release for times following thermal-neutron fission of 235U between 2 and 14,000 seconds (Oak Ridge National Laboratory, USA, 1977) ORNL/NUREG-14. [Google Scholar]
- P.I Johansson, G. Nilsson, Measurement of decay energy released in thermal fission of 235U (Aktiebolaget Atomenergi, Sweden, 1977) [Google Scholar]
- J.L Yarnell, P.J. Bendt, calorimetric fission product decay heat measurements for 239Pu, 233U and 235U (Los Alamos Scientific Laboratory, USA, 1978) LA-7452-MS [Google Scholar]
- V.E Schrock, L.M. Grossman, S.G. Prussin, K.c. Sockalingam, F. Nuh, c.K. Fan, et al., A calorimetric Measurement of Decay Heat from 235U Fission Products from 10-105 Seconds (Electric Power Research Institute, USA, 1978) NP-616 [Google Scholar]
- S.J Friesenhahn, N.A. Lurie, Measurements of 239Pu and 235U fission product decay power from 1 to 105 seconds (Electric Power Research Institute, USA, 1979), EPRI NP-998. https://www-nds.iaea.org/media/docs/fission/EPRI-NP-180(1976).pdf [Google Scholar]
- E.T Jurney, P.J. Bendt, T.R. England, Fission product gamma spectra (Los Alamos Scientific Laboratory, USA, 1979), LA-7620-MS [Google Scholar]
- J.K Dickens, T.A. Love, J.W. Mcconnell, R.W. Peele, Fission-Product Energy Release for Times Following Thermal-Neutron Fission of 235U Between 2 and 14 000 s. Nucl. Sci. Eng. 74, 106 (1980). https://doi.org/10.13182/NSE80-A19627 [Google Scholar]
- J.K Dickens, T.A. Love, J.W. Mcconnell, R.W. Peele, Fission-Product Energy Release for Times Following Thermal-Neutron Fission of Plutonium-239 and Plutonium-241 Between 2 and 14 000 s. Nucl. Sci. Eng. 78, 126 (1981). https//doi.org/10.13182/NSE81-A20099 [Google Scholar]
- J.K Dickens, J.F. Emery, T.A. Love, J.W. Mcconnell, K.J. Northcutt, R.W. Peele, et al. Fission-Product Energy Release for times following thermal-neutron fission of 239Pu between 2 and 14 000 seconds (Oak Ridge National Laboratory, USA, 1978a), ORNL/NUREG-34. [Google Scholar]
- J.K Dickens, J.F. Emery, T.A. Love, J.W. Mcconnell, K.J. Northcutt, R.W. Peele, et al., Fission-Product Energy Release for times following thermal-neutron fission of 241Pu between 2 and 14 000 seconds (Oak Ridge National Laboratory, USA, 1978b), ORNL/NUREG-47 [Google Scholar]
- M. Akiyama, S. An, Gamma Decay Heat for 14 MeV Neutron Fission of 235U, 238U, and 232Th, In: NEANDC Specialists Meetings on Yields and Decay Data of Fission Product Nuclides, October 24-27, 1983 (Brookhaven National Laboratory, USA, 1984), BNL-5177 [Google Scholar]
- I. Gauld, Data compilation and Analysis of Fission Product Decay Heat Experiments (International Atomic Energy Agency, 2019), TAL-NAPC20190311-001. https://www-nds.iaea.org/media/docs/fission/Gauld_SummaryReport_2019.pdf [Google Scholar]
- V.E Schrock, L.M. Grossman, S.G. Prussin, K.c. Sockalingam, F. Nuh, c.K. Fan, et al., A calorimetric measurement of decay heat from 235U fission products from 10 to 105 seconds (Electric Power Research Institute, USA, 1978), EPRI NP-616. https://www-nds.iaea.org/media/docs/fission/EPRI-NP-616(1978).pdf [Google Scholar]
- P.I Johansson, Integral determination of the β and γ heat in thermal-neutron-induced fission of 235U and 239Pu, and the gamma heat in the fast fission of 238U. In: Proceedings of a Specialists’ meeting on data for decay heat predictions, Studsvik, Sweden, 7-10 September (1987). https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/neacrp-l-1987-302.pdf [Google Scholar]
- A. McNair, R.L.G. Keith, A measurement of the β decay energy from the fission products of 239Pu, J. Nucl. Energy 23, 697 (1969). https://www.sciencedirect.com/science/article/pii/0022310769900252 [CrossRef] [Google Scholar]
- A. Tobias, Decay Heat (central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, GL13 9PB, 1979) [Google Scholar]
- M. Akiyama, S. An, Measurements of fission product decay heat for fast reactors, In: Proceedings of the International conference on Nuclear Data for Science and Technology, Antwerp 6-10 September 1982 (1983) [Google Scholar]
- W.A Schier, G.P. couchell, β and γ decay heat measurements between 0.1 sec - 50,000 sec for neutron fission of 235U, 238U and 239Pu: final report (University of Massachussetts Lowell, 1997) DOE/ER/40723-4. https://doi.org/10.2172/532606 [Google Scholar]
- H.V Nguyen, Gamma-ray Spectra and Decay Heat Following 235U Thermal Neutron Fission (University of Massachusetts Lowell, Lowell, USA, 1997) [Google Scholar]
- S. Li, Beta Decay Heat Following 235U, 238U and 239Pu Neutron Fission (University of Massachusetts Lowell, Lowell, USA, 1997) [Google Scholar]
- E.H Seabury, Gamma-ray Decay Heat Measurements Following 238U(n,f) and 239Pu(n,f) (University of Massachusetts Lowell, Lowell, USA, 1997) [Google Scholar]
- Y. Nauchi, H. Junichi, S. Tadafumi, T. Yoshiyuki, K. Koji, U. Hironobu, Detection of Gamma Ray from Sort-Lived Fission Products at KUCA and KURNS-LINAC, In: Symposium on Nuclear Data 2020, 26-27 November 2020, RIKEN Wako campus (2020). https://indico2.riken.jp/event/3359/contributions/15415/ [Google Scholar]
- S. Glasstone, A. Sesonske, Nuclear Reactor Engineering (D. Van Nostrand company, 1963) [Google Scholar]
- N.E Todreas, M.S. Kazimi, Nuclear Systems I, Thermal Hydraulic Fundamentals (Hemisphere Publishing corporation, 1990) [Google Scholar]
- J.J Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (John Wiley & sons, 1976) [Google Scholar]
- S. Glasstone, A. Sesonske, Nuclear Reactor Engineering, 3rd edn. (Krieger Publishing company, 1981) [Google Scholar]
- J.c Nimal, Sûreté et puissance résiduelle (commissariat à l’Énergie Atomique (CEA), France, 2001), clefs du CEA numéro 45. https://www.cea.fr/multimedia/Documents/publications/clefs-cea/archives/fr/08-puissance.pdf [Google Scholar]
- H.L Hall, D.c. Hoffman, Delayed fission. Annu. Rev. Nucl. Part. Sci. 42, 147 (1992). https://www.annualreviews.org/doi/pdf/10.1146/annurev.ns.42.120192.001051 [CrossRef] [Google Scholar]
- A.N Andreyev, M. Huyse, P. Van Duppen, colloquium: Beta-delayed fission of atomic nuclei, Rev. Mod. Phys. 85, 1541 (2013). https://link.aps.org/doi/10.1103/RevModPhys.85.1541 [CrossRef] [Google Scholar]
- American Nuclear Society, Decay heat power in Light Water Reactors, ANSI/ANS-5.1-2014 (R2019) (2019) [Google Scholar]
- DIN Standards committee Materials Testing. Decay heat power in nuclear fuels of high-temperature reactors with spherical fuel elements, English translation of DIN 25485:1990-05 (DIN Standards committee Materials Testing, Germany, 1990) DIN 25485:1990-05 [Google Scholar]
- K. Tasaka, T. Katoh, J. Katakura, T. Yoshida, S. Iijima, R. Nakasima, et al., Recommendation on Decay Heat Power in Nuclear Reactors, J. Nucl. Sci. Technol. 28, 1134 (1991). https://doi.org/10.1080/18811248.1991.9731481 [CrossRef] [Google Scholar]
- K. Shure, Fission Product Decay Energy (Bettis Technical Review, USA, 1961) WAPD-BT-24 [Google Scholar]
- J.F Perkins, R.W. King, Energy release from the decay of fission products, Nucl. Sci. Eng. 3, 726 (1958) [CrossRef] [Google Scholar]
- J.R Stehn, E.F. clancy, Fission products radioactivity and heat generation, In: Proceedings of the second UN International conference on the Peaceful Uses of Atomic Energy, Geneva (1958), Vol. 13, p. 49 [Google Scholar]
- J.K Dickens, T.R. England, R.E. Schenter, current status and proposed improvements to the ANSI/ANS-5.1 American National Standard for decay heat power in light water reactors, Nucl. Safety 32, 209 (1991) [Google Scholar]
- V.E Schrock, A Revised ANS Standard for Decay Heat from Fission Products, Nucl. Technol. 46, 323 (1979). https://doi.org/10.13182/NT79-A32334 [CrossRef] [Google Scholar]
- V.E Schrock, Evaluation of decay heating in shutdown reactors, Prog. Nucl. Energy 3, 125 (1979). https://www.sciencedirect.com/science/article/pii/0149197079900131 [CrossRef] [Google Scholar]
- E. Rutherford, F. Soddy, LX. Radioactive Change, London Edinburgh Dublin Philos. Mag. J. Sci. 5, 576 (1903). https://doi.org/10.1080/14786440309462960 [Google Scholar]
- H. Bateman, The solution of a system of differential equations occurring in the theory of radioactive transformations. In: the Proceedings of the Cambridge Philosophical Society, Mathematical and physical sciences (1910), p. 423. https://archive.org/details/cbarchive_122715_solutionofasystemofdifferentia1843/mode/2up [Google Scholar]
- W.M Stacey, Nuclear Reactor Physics (John Wiley & sons, 2001) [Google Scholar]
- A.E Isotalo, J. Leppänen, J. Dufek, Preventing xenon oscillations in Monte Carlo burnup calculations by enforcing equilibrium xenon distribution, Ann. Nucl. Energy 60, 78 (2013). https://www.sciencedirect.com/science/article/pii/S0306454913002405 [CrossRef] [Google Scholar]
- D. Lee, J. Rhodes, K. Smith, Quadratic Depletion Methodfor Gadolinium Isotopes in CASMO-5, Nucl. Sci. Eng. 174, (2013). https://doi.org/10.13182/NSE12-20 [Google Scholar]
- M.A.W. Mondal, M. Doroudian, Burnup calculations to estimate the effect of chemical shim boron on the production and depletion of heavy isotopes in a PWR, Appl. Rad. Isotopes. 45, 155 (1994). https://www.sciencedirect.com/science/article/pii/0969804394900043 [CrossRef] [Google Scholar]
- NEA/WPNCS/EGADSNF, Spent Nuclear Fuel Assay Data for Isotopic Validation (Nuclear Energy Agency, NEA/NSC/WPNCS/DOC(2011)5, 2011) [Google Scholar]
- G. Ilas, I.C. Gauld, SCALE analysis of CLAB decay heat measurements for LWR spent fuel assemblies, Ann. Nucl. Energy 35, 37 (2008). https://www.sciencedirect.com/science/article/pii/S0306454907001375 [CrossRef] [Google Scholar]
- J. Hu, I.C. Gauld, J.E. Banfield, S.E. Skutnik, Developing Spent Fuel Assembly Standards for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project (Oak Ridge National Laboratory, USA, 2014) ORNL/TM-2013/576 [Google Scholar]
- G. Radulescu, I.C. Gauld, G. Ilas, SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions (Oak Ridge National Laboratory, USA, 2010) ORNL/TM-2010/44 [Google Scholar]
- G. Ilas, I.C. Gauld, Analysis of Experimental Data for High-Burnup PWR Spent Fuel Isotopic Validation - Vandellos II (Oak Ridge National Laboratory, USA, 2011) ORNL/TM-2009/321 [Google Scholar]
- G. Ilas, I.C. Gauld, G. Radulescu, Validation of new depletion capabilities and ENDF/B-VII data libraries in SCALE, Ann. Nucl. Energy 46, 43 (2012). https://www.sciencedirect.com/science/article/pii/S0306454912000916 [CrossRef] [Google Scholar]
- J.C Wagner, M.D. Dehart, Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations (Oak Ridge National Laboratory, USA, 2000) ORNL/TM-1999/246 [Google Scholar]
- J.C Wagner, M.D. Dehart, C.V. Parks, Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses (Oak Ridge National Laboratory, USA, 2003) NUREG/CR-6801 [Google Scholar]
- J.C Neuber, Evaluation of axial and horizontal burnup profiles, In: Technical committee meeting on implementation of burnup credit in spent fuel management systems, Vienna Austria, 10-14, IAEA-TECDOC-1241 (2001). https://www.osti.gov/etdeweb/servlets/purl/20198203. [Google Scholar]
- K. Kim, J. Hong, Criticality effect according to axial burnup profiles in PWR burnup credit analysis, Nucl. Eng. Technol. 51, 1708 (2019). https://www.sciencedirect.com/science/article/pii/S1738573319301421 [CrossRef] [Google Scholar]
- R.F Cacciapouti, S.V. Volkinburg, Update on the PWR axial burnup profile database, In: Proceedings of 6th annual international conference on high level radioactive waste management, 30 Apr - 5 May. Las Vegas, NV, United States (1995), p. 541 [Google Scholar]
- J.M Scaglione, PWR Axial Burnup Profile Analysis (Oak Ridge National Laboratory, NCAL-DSU-NU-000012 REV 00A; 2003) [Google Scholar]
- S. Caruso, Estimation of the radionuclide inventory in LWR spent fuel assembly structural materials for long-term safety analysis, EPJ Nucl. Sci. Technol. 2, 4 (2016). https://doi.org/10.1051/epjn/e2015-50057-8 [CrossRef] [EDP Sciences] [Google Scholar]
- M. Kromar, A.T. Godfrey, Determination of the spent fuel decay heat with the VERA core simulator, Front. Energy Res. 10, 1046506 (2022). https://www.frontiersin.org/articles/10.3389/fenrg.2022.1046506. [CrossRef] [Google Scholar]
- B. Ebiwonjumi, C. Kong, P. Zhang, A. Cherezov, D. Lee, Uncertainty quantification of PWR spent fuel due to nuclear data and modeling parameters, Nucl. Eng. Technol. 53, 715 (2021). https://www.sciencedirect.com/science/article/pii/S1738573320303521 [CrossRef] [Google Scholar]
- M. Kromar, B. Kurincic, Determination of the NPP Krsko spent fuel decay heat, In: AIP Conf. Proc. 21 July (2017), Vol. 1866 p. 050005. https://doi.org/10.1063/1.4994529 [CrossRef] [Google Scholar]
- D. Kotlyar, E. Shwageraus, On the use of predictor-corrector method for coupled Monte Carlo burnup codes, Ann. Nucl. Energy 58, 228 (2013). https://www.sciencedirect.com/science/article/pii/S0306454913001643 [CrossRef] [Google Scholar]
- J. Dufek, J.E. Hoogenboom, Numerical stability of existing Monte Carlo burnup codes in cycle calculations of critical reactors, Nucl. Sci. Eng. 162, 307 (2009) [CrossRef] [Google Scholar]
- J. Dufek, D. Kotlyar, E. Shwageraus, The stochastic implicit Euler method - A stable coupling scheme for Monte Carlo burnup calculations, Ann. Nucl. Energy 60, 295 (2013). https://www.sciencedirect.com/science/article/pii/S0306454913002703 [CrossRef] [Google Scholar]
- L. Fiorito, A. Stankovskiy, G. Van den Eynde, P.E. Labeau, Development of time-dependent reaction rates to optimise predictor-corrector algorithm in ALEPH burn-up code, Ann. Nucl. Energy 62, 307 (2013). https://www.sciencedirect.com/science/article/pii/S0306454913003113 [CrossRef] [Google Scholar]
- A.E Isotalo, P.A. Aarnio, Higher order methods for burnup calculations with Bateman solutions, Ann. Nucl. Energy 38, 1987 (2011). https://www.sciencedirect.com/science/article/pii/S0306454911001708 [CrossRef] [Google Scholar]
- A.E Isotalo, P.A. Aarnio, Substep methods for burnup calculations with Bateman solutions, Ann. Nucl. Energy 38, 2509 (2011). https://www.sciencedirect.com/science/article/pii/S0306454911002726 [CrossRef] [Google Scholar]
- J. Dufek, V. Valtavirta, Time step length versus efficiency of Monte Carlo burnup calculations, Ann. Nucl. Energy 72, 409 (2014). https://www.sciencedirect.com/science/article/pii/S0306454914002813 [CrossRef] [Google Scholar]
- J. Dufek, I. Mickus, Optimal time step length and statistics in Monte Carlo burnup simulations, Ann. Nucl. Energy 139 107244 (2020). https://www.sciencedirect.com/science/article/pii/S0306454919307546 [CrossRef] [Google Scholar]
- S.W.D. Hart, G. Maldonado-Ivan, S. Goluoglu, Implementation of the doppler broadening rejection correction in KENO, Trans. Am. Nucl. Soc. 36, 423 (2013) [Google Scholar]
- B. Becker, R. Dagan, G. Lohnert, Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel, Ann. Nucl. Energy 36, 470 (2009). https://www.sciencedirect.com/science/article/pii/S0306454908003186 [CrossRef] [Google Scholar]
- R. Dagan, C.H.M. Broeders, On the effect of resonance dependent scattering-kernel on fuel cycle and inventory, In: Proceedings of the PHYSOR 2006, Sept. 10-14. Vancouver, BC, Canada (2006) [Google Scholar]
- R. Dagan, On the use of S(αβ) tables for nuclides with well pronounced resonances, Ann. Nucl. Energy 32, 367 (2005). https://www.sciencedirect.com/science/article/pii/S0306454904002191 [CrossRef] [Google Scholar]
- R. Dagan, On the angular distribution of the ideal gas scattering kernel, Ann. Nucl. Energy 35, 1109 (2008). https://www.sciencedirect.com/science/article/pii/S0306454907002800 [CrossRef] [Google Scholar]
- W. Rothenstein, R. Dagan, Ideal gas scattering kernel for energy dependent cross-sections, Ann. Nucl. Energy 25, 209 (1998). https://www.sciencedirect.com/science/article/pii/S0306454997000637 [CrossRef] [Google Scholar]
- F.B Brown, Doppler Broadening Resonance Correction for Free-gas Scattering in MCNP6.2 (Los Alamos National Laboratory, 2019) LA-UR-19-24824 [Google Scholar]
- W.A Wieselquist, E.R.A. Lefebvre, SCALE Code System - Version 6.2.4 (Oak Ridge National Laboratory, ORNL/TM-SCALE-6.3.1, 2023) [Google Scholar]
- J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015). https://www.sciencedirect.com/science/article/pii/S0306454914004095 [CrossRef] [Google Scholar]
- A.L Nichols, Nuclear Data Requirements for Decay Heat Calculations, in ICTP Lecture Notes 20, Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety, 25 February-28 March 2002, edited by M. Herman, N. Paver (ICTP Publication & Printing, Trieste, 2005), pp. 65–195, ISBN 92-95003-30-6 [Google Scholar]
- T. Yoshida, N. Hagura, R. Umezu, A. Algora, J.L. Tain, D. Jordan, et al., Impact of TAGS Measurement on FP Decay Data and Decay Heat Calculations, J. Korean Phys. Soc. 59, 1543 (2011). https://www.jkps.or.kr/journal/view.html?volume=59&number=2(3)&spage=1543&year=2011 [CrossRef] [Google Scholar]
- M. Fleming, J.C. Sublet, Validation of FISPACT-II, Decay Heat and Inventory, Predictions for Fission Events (Culham Centre for Fusion Energy, CCFE, UK, 2015) CCFE-R(15)28 [Google Scholar]
- A.L Nichols, P. Dimitriou, A. Algora, M. Fallot, L. Giot, F.G. Kondev, et al., Improving Fission-product Decay Data for Reactor Applications: Part I - Decay Heat, Eur. Phys. J. A 59, 78 (2023). https://hal.science/hal-03930912 [CrossRef] [Google Scholar]
- J.C Hardy, L.C. Carraz, B. Jonson, P.J. Hansen, The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes, Phys. Lett. B. 71, 307 (1977). https://www.sciencedirect.com/science/article/pii/0370269377902234 [CrossRef] [Google Scholar]
- J.L. Taìn, Beta-decay total absorption measurements for nuclear technology and astrophysics, In: International Conference on Nuclear Data for Science and Technology 2007, April 22-April 27. Nice, France (2008) [Google Scholar]
- R.C Greenwood, R.G. Helmer, M.H. Putnam, K.D. Watts, Measurement of β-decay intensity distributions of several fission-product isotopes using a total absorption γ-ray spectrometer, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equipment 390, 95 (1997). https://www.sciencedirect.com/science/article/pii/S0168900297003562 [CrossRef] [Google Scholar]
- M.A Kellett, O. Bersillon, The Decay Data Evaluation Project (DDEP) and the JEFF-3.3 radioactive decay data library: Combining international collaborative efforts on evaluated decay data, EPJ Web Conf. 146, 02009 (2017). https://doi.org/10.1051/epjconf/201714602009 [Google Scholar]
- D. Cano-Ott, J.L. Tain, A. Gadea, B. Rubio, L. Batist, M. Karny, et al., Monte Carlo simulation of the response of a large NaI(Tl) total absorption spectrometer for β-decay studies, Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detect. Assoc. Equipment 430, 333 (1999). https://www.sciencedirect.com/science/article/pii/S016890029900217X [CrossRef] [Google Scholar]
- D. Cano-Ott, J.L. Tain, A. Gadea, B. Rubio, L. Batist, M. Karny, et al., Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape, Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrometers Detect Assoc Equipment 430, 488 (1999). https://www.sciencedirect.com/science/article/pii/S0168900299002168 [CrossRef] [Google Scholar]
- J.L Tain, D. Cano-Ott, The influence of the unknown de-excitation pattern in the analysis of β-decay total absorption spectra, Nucl. Instrum. Methods Phys. Res. A. 571, 719 (2007) [CrossRef] [Google Scholar]
- J.L Tain, D. Cano-Ott, Algorithms for the analysis of β-decay total absorption spectra, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equipment. 571, 728 (2007). https://www.sciencedirect.com/science/article/pii/S0168900206018985 [CrossRef] [Google Scholar]
- D. Paraskevi, Development of a reference database for beta-delayed neutron emission (International Atomic Energy Agency, 2015), INDC(NDS)-0683 [Google Scholar]
- M. Gupta, M.A. Kellett, A.L. Nichols, O. Bersillon, Decay Heat Calculations: Assessment of Fission Product Decay Data Requirements for Th/U Fuel (International Atomic Energy Agency, 2010) INDC(NDS)-0577 [Google Scholar]
- A.L Nichols, C. Nordborg, Total Absorption Gamma-ray Spectroscopy (TAGS), Current Status of Measurement Programmes for Decay Heat Calculations and Other Applications (International Atomic Energy Agency, 2009), INDC(NDS)-0551 [Google Scholar]
- A. Algora, D. Jordan, J.L. Taín, B. Rubio, J. Agramunt, A.B. Perez-Cerdan, et al., Reactor Decay Heat in 239Pu: Solving the γ Discrepancy in the 4-3000-s Cooling Period. Phys. Rev. Lett. 105, 202501 (2010). https://link.aps.org/doi/10.1103/PhysRevLett.105.202501 [CrossRef] [PubMed] [Google Scholar]
- D. Jordan, A. Algora, J.L. Tain, B. Rubio, J. Agramunt, A.B. Perez-Cerdan, et al., Total absorption study of the β decay of 102,104,105TC. Phys. Rev. C 87, 044318 (2013). https://link.aps.org/doi/10.1103/PhysRevC.87.044318 [CrossRef] [Google Scholar]
- A.A. Zakari-Issoufou, M. Fallot, A. Porta, A. Algora, J.L. Tain, E. Valencia, et al., Total Absorption Spectroscopy Study of 92Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape, Phys. Rev. Lett. 115, 102503 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.115.102503 [CrossRef] [PubMed] [Google Scholar]
- S. Rice, A. Algora, J.L. Tain, E. Valencia, J. Agramunt, B. Rubio, et al., Total absorption spectroscopy study of the β decay of 86Br and 91Rb, Phys. Rev. C. 96, 014320 (2017). https://link.aps.org/doi/10.1103/PhysRevC.96.014320 [CrossRef] [Google Scholar]
- E. Valencia, J.L. Tain, A. Algora, J. Agramunt, E. Estevez, M.D. Jordan, et al., Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb, Phys. Rev. C 95, 024320 (2017). https://link.aps.org/doi/10.1103/PhysRevC.95.024320 [CrossRef] [Google Scholar]
- V. Guadilla, A. Algora, J.L. Tain, M. Estienne, M. Fallot, A.A. Sonzogni, et al., Large Impact of the Decay of Niobium Isomers on the Reactor ν̅e Summation Calculations. Phys. Rev. Lett. 122, 042502 (2019). https://link.aps.org/doi/10.1103/PhysRevLett.122.042502 [CrossRef] [Google Scholar]
- V. Guadilla, J.L. Tain, A. Algora, J. Agramunt, D. Jordan, M. Monserrate, et al., Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 137I and 95Rb, Phys. Rev. C 100, 044305 (2019). https://link.aps.org/doi/10.1103/PhysRevC.100.044305 [CrossRef] [Google Scholar]
- V. Guadilla, L. Le Meur, M. Fallot, J.A. Briz, M. Estienne, L. Giot, et al., Total absorption γ-ray spectroscopy of the β decays of 96gs,mY, Phys. Rev. C. 106, 014306 (2022). https://link.aps.org/doi/10.1103/PhysRevC.106.014306 [CrossRef] [Google Scholar]
- B.C Rasco, M. Wolińska Cichocka, A. Fijałkowska, K.P. Rykaczewski, M. Karny, R.K. Grzywacz, et al., Decays of the Three Top Contributors to the Reactor ν̅e High-Energy Spectrum, 92Rb, 96gs,mY, and 142Cs, Studied with Total Absorption Spectroscopy, Phys. Rev. Lett. 117, 092501 (2016). https://link.aps.org/doi/10.1103/PhysRevLett.117.092501 [CrossRef] [Google Scholar]
- A. Fijałkowska, M. Karny, K.P. Rykaczewski, B.C. Rasco, R. Grzywacz, C.J. Gross, et al., Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν̅e flux calculation, Phys. Rev. Lett. 119, 052503 (2017). https://link.aps.org/doi/10.1103/PhysRevLett.119.052503 [CrossRef] [Google Scholar]
- B.C Rasco, K.P. Rykaczewski, A. Fijałkowska, M. Karny, M. Wolińska Cichocka, R.K. Grzywacz, et al, Complete β-decay pattern for the high-priority decay-heat isotopes 137I and 137Xe determined using total absorption spectroscopy, Phys. Rev. C 95, 054328 (2017). https://link.aps.org/doi/10.1103/PhysRevC.95.054328 [CrossRef] [Google Scholar]
- A.L Nichols, P. Dimitriou, A. Algora, M. Fallot, L. Giot, F.G. Kondev, et al. Improving Fission-product Decay Data for Reactor Applications: Part I - Decay Heat, ArXiv e-prints [arXiv: 2212.10335] (2022). https://arxiv.org/abs/2212.10335 [Google Scholar]
- D.A Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, MW Herman, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nucl. Data Sheets 148, 1 (2018), Special Issue on Nuclear Reaction Data. https://www.sciencedirect.com/science/article/pii/S0090375218300206 [CrossRef] [Google Scholar]
- O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, et al. Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol. 60, 1 (2023). https://doi.org/10.1080/00223131.2022.2141903 [CrossRef] [Google Scholar]
- C. Moler, C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev. 45, 3 (2003). https://doi.org/10.1137/S00361445024180 [NASA ADS] [CrossRef] [Google Scholar]
- A.E Isotalo, P.A. Aarnio, Comparison of depletion algorithms for large systems of nuclides, Ann. Nucl. Energy 38, 261 (2011). https://www.sciencedirect.com/science/article/pii/S0306454910003889 [CrossRef] [Google Scholar]
- J. Cetnar, General solution of Bateman equations for nuclear transmutations, Ann. Nucl. Energy 33, 640 (2006). https://www.sciencedirect.com/science/article/pii/S0306454906000284 [CrossRef] [Google Scholar]
- J. Cetnar, P. Gronek, BISON-C: A one-dimensional transport and burnup calculation code with consideration of actinides and fission products, Nucl. Sci. Eng. 134, 236(2000) [Google Scholar]
- O. Kum, Development of easy-to-use interface for nuclear transmutation computing, VCINDER code, Nucl. Eng. Technol. 50, 25 (2018). https://www.sciencedirect.com/science/article/pii/S1738573316303370 [CrossRef] [Google Scholar]
- J. Cetnar, J. Wallenius, W. Gudowski, MCB. A continuous energy Monte Carlo burnup simulation code, In: Proceedings of the Actinide and fission product partitioning and transmutation, Nov. 25-27. Mol, Belgium: Nuclear Energy Agency of the OECD (NEA) (1998), pp. 523–527. https://oecd-nea.org/trw/docs/mol98/postersession/POSTSpaper12.pdf [Google Scholar]
- M. Oettingen, P. Stanisz, J. Cetnar, G. Kepisty, Transmutation trajectory analysis in the modelling of LFR fuel cycle, In: Proceedings of the International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development, June 26-29. Yekaterinburg, Russian Federation: International Atomic Energy Agency (IAEA) (2017), p. 26. https://inis.iaea.org/search/search.aspx?orig_q=RN:48087785 [Google Scholar]
- A.G Croff, ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials, Nucl. Technol. 62, 335 (1983). https://doi.org/10.13182/NT83-1 [CrossRef] [Google Scholar]
- B.T Rearden, M.A. Jessee, SCALE Code System (Oak Ridge National Laboratory, USA, 2018) ORNL/TM-2005/39. https://www.ornl.gov/sites/default/files/SCALE_6.2.3.pdf [Google Scholar]
- D.I Poston, H.R. Trellue, User’s manual, version 1.00 for Monteburns, version 3.01 (Los Alamos National Laboratory, USA, 1998) LA-UR-98-2718 [Google Scholar]
- R.S Babcock, R.L. Moore, D.E. Wessol, B.G. Schnitzler, C.A. Wemple, MOCUP: MCNP=ORIGEN2 Coupling Utility Programs, In: Proceedings of the 4th meeting of the International Group On Research Reactors, IGORR-IV, May 24-25. Gatlinburg, TN, USA (1995). https://www.igorr.com/Documents/1995-GATLINBURG/36023816.pdf [Google Scholar]
- J. Sanz, O. Cabellos, N. García-Herranz, ACAB Inventory code for nuclear applications: User’s manual V. 2008, NEA-1839 6, 475 (2008) [Google Scholar]
- A. Talamo, F. Álvarez-Velarde, E.M. González-Romero, A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle. Sci. Technol. Nuc. Instal. 2012, 149089 (2012). https://doi.org/10.1155/2012/149089 [Google Scholar]
- W. Haeck, B. Cochet, L. Aguiar, Monte Carlo depletion calculations using VESTA 2.1 new features and perspectives, In: International Conference on the Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics (2012), Vol. 3 [Google Scholar]
- E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer Series in Comput. Mathematics, Springer-Verlag, 1996), Vol. 14, p. 1991 [Google Scholar]
- R.B Sidje, Expokit: A Software Package for Computing Matrix Exponentials, ACM Trans. Math. Softw. 24, 130 (1998). https://doi.org/10.1145/285861.285868 [CrossRef] [Google Scholar]
- A. Stankovskiy, G. Van Den Eynde, P. Baeten, C. Trakas, P.M. Demy, L. Villatte, ALEPH2 - A general purpose Monte Carlo depletion code, In: Proceedings of the PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, April 15-20. Knoxville, Tennessee, USA (2012) [Google Scholar]
- M.A Bochev, A short guide to exponential Krylov subspace time integration for Maxwell’s equations, No. 1992 in Memorandum (University of Twente, Department of Applied Mathematics, 2012) [Google Scholar]
- M. Pusa, Higher-Order Chebyshev Rational Approximation Method and Application to Burnup Equations, Nucl. Sci. Eng. 182, 297 (2016). https://doi.org/10.13182/NSE15-26 [CrossRef] [Google Scholar]
- NEA/WPNCS/EGADSNF, Evaluation guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO) (Nuclear Energy Agency, NEA/NSC/R(2015)8, 2015). https://www.oecd-nea.org/jcms/pl_19678 [Google Scholar]
- A. Shama, D. Rochman, S. Pudollek, S. Caruso, A. Pautz, Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules, Nucl. Eng. Technol. 53, 2816 (2021). https://www.sciencedirect.com/science/article/pii/S1738573321001558 [CrossRef] [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, Analysis for the ARIANE BM1 and BM3 samples: nuclide inventory and decay heat, EPJ Nucl. Sci Technol. 7, 18 (2021). https://doi.org/10.1051/epjn/2021017 [CrossRef] [EDP Sciences] [Google Scholar]
- R. Macian, M.A. Zimmermann, R. Chawla, Statistical Uncertainty Analysis Applied to Fuel Depletion Calculations, J. Nucl. Sci. Technol. 44, 875 (2007). https://www.tandfonline.com/doi/abs/10.1080/18811248.2007.9711325 [CrossRef] [Google Scholar]
- A. Hernandez-Solis, Uncertainty and sensitivity analysis applied to LWR neutronic and thermalhydraulic calculations (Chalmers University of Technology, Goteborg, Sweden, 2012) [Google Scholar]
- W. Wulff, B.E. Boyack, I. Catton, R.B. Duffey, P. Griffith, K.R. Katsma, et al. Quantifying reactor safety margins part 3: Assessment and ranging of parameters, Nucl. Eng. Design 119, 33 (1990). https://www.sciencedirect.com/science/article/pii/0029549390900737 [CrossRef] [Google Scholar]
- R.N Bratton, M. Avramova, K. Ivanov, OECD/NEA Benchmark for uncertainty analysis in modeling (UAM) for LWRs - summary and discussion of neutronics cases (Phase I), Nucl. Eng. Technol. 46, 313 (2014). https://www.sciencedirect.com/science/article/pii/S1738573315301285 [CrossRef] [Google Scholar]
- E. Canuti, A. Petruzzi, F. D’Auria, T. Kozlowski, Sensitivity Studies for the Exercise I-1 of the OECD/UAM Benchmark, Sci. Technol. Nucl. Install. 2012, 817185 (2012). https://doi.org/10.1155/2012/817185 [CrossRef] [Google Scholar]
- L. Caillot, C. Nonon, V. Basini, Out-of-pile and in-pile viscoplastic behaviour of mixed-oxide fuels, In: Pellet-clad Interaction in Water Reactor Fuels, 9-11 March. Aix-en-Provence, France (2004), p. 153. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/6004-pellet-clad.pdf [Google Scholar]
- A.V Smirnov, B.A. Kanashov, D.V. Markov, V.A. Ovchinikov, V.S. Polenok, A.A. Ivashchenko, Pellet-cladding interaction in VVER fuel rods, In: Pellet-clad Interaction in Water Reactor Fuels, 9-11 March. Aix-en-Provence, France (2004), p. 231. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/6004-pellet-clad.pdf [Google Scholar]
- C. Mougel, B. Verhaeghe, C. Verdeau, S. Lansiart, S. Béguin, B. Julien, Power ramping in the OSIRIS reactor: database analysis for standard UO2 fuel with ZY-4 cladding. In: Pellet-clad Interaction in Water Reactor Fuels, 9-11 March. Aix-en-Provence, France (2004), p. 333. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/6004-pellet-clad.pdf [Google Scholar]
- C. Garnier, P. Mailhe, P. Vesco, L.C. Bernard, C. Delafoy, P. Garcia, The COPERNIC mechanical model and its application to doped fuel, In: Pellet-clad Interaction in Water Reactor Fuels, 9-11 March. Aix-en-Provence, France (2004), p. 465. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/6004-pellet-clad.pdf [Google Scholar]
- R. Manzel, C.T. Walker, EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100 MWd/kgHM, J. Nucl. Mater. 301, 170 (2002). https://www.sciencedirect.com/science/article/pii/S002231150100753X [CrossRef] [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, Analysis for the ARIANE GU1 sample: Nuclide inventory and decay heat, Ann. Nucl. Energy 160, 108359 (2021). https://www.sciencedirect.com/science/article/pii/S0306454921002358 [CrossRef] [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, A.M. Noz, M.V. Antolin, M.B. Torres, et al. Analysis of ENRESA BWR samples: nuclide inventory and decay heat, EPJ Nucl. Sci. Technol. 8, 9 (2022). https://doi.org/10.1051/epjn/2022007 [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Kovbasenko, Comparative Analysis of VVER-1000 Westinghouse and TVEL Spent Fuel Capability, Univ. J. Phys. Appl. 10, 105 (2016) [Google Scholar]
- J. Vojackova, F. Novotny, K. Katovsky, Safety analyses of reactor VVER 1000, Energy Procedia 127, 352 (2017) [CrossRef] [Google Scholar]
- I. Christoskov, L. Tsankov, N. Ivanov, The feasibility of express in situ measurement of the isotopic composition of uranium in fresh WWER-1000 fuel, In: Proceedings of the 9 International conference on WWER fuel performance, modelling and experimental support (Bulgarian Academy of Sciences, Sofia, Bulgaria, 2011), pp. 879–888 [Google Scholar]
- D.V Hristov, P.V. Petkov, I. Naev, Calculation of decay heat rate in VVER-1000 spent fuel pool including uncertainties, Nucl. Eng. Design 366, 110754 (2020) [CrossRef] [Google Scholar]
- C. Frepoli, H. Glaeser, GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications, Sci. Technol. Nucl. Install. 798901-7 (2008). https://doi.org/10.1155/2008/798901 [Google Scholar]
- M. Kloos, Mean features of the tool SUSA 4.0 for uncertainty and sensitivity analyses, In: Safety and Reliability of Complex Engineered Systems, edited by L. Podofillini, B. Sudret, B. Stojadinovic, E. Zio, W. Kröger (CRC Press, London, UK, 2015), pp. 107–132 [Google Scholar]
- S.S Wilks, Determination of Sample Sizes for Setting Tolerance Limits, Ann. Math. Stat. 12, 91 (1941) [CrossRef] [Google Scholar]
- S.S Wilks, Statistical Prediction with Special Reference to the Problem of Tolerance Limits, Ann. Math. Stat. 13, 400 (1942). https://doi.org/10.1214/aoms/1177731537 [CrossRef] [Google Scholar]
- IAEA. Storage of Spent Nuclear Fuel, No. SSG-15 in Specific Safety Guides (International Atomic Energy Agency, Vienna, 2012). https://www.iaea.org/publications/8532/storage-of-spent-nuclear-fuel [Google Scholar]
- A. Tsilanizara, T.D. Huynh, New feature of DARWIN/PEPIN2 inventory code: Propagation of nuclear data uncertainties to decay heat and nuclide density, Ann. Nucl. Energy 164, 108579 (2021) [CrossRef] [Google Scholar]
- H. Golfier, R. Lenain, J.J. Lautard, P. Fougeras, P. Magat, E. Martinolli, et al, APOLLO3: a common project of CEA, AREVA and EDF for the development of new deterministic multi-purpose code for core physics analysis, In: International Conference on Mathematics, Computational Methods Reactor Physics (Saratoga Springs, New-York, 2009) [Google Scholar]
- M. Coste-Delclaux, GALILÉE: A nuclear data processing system for transport, depletion and shielding codes, In: Proc. Int. Conf. PHYSOR 2008, Interlaken, Switzerland, 14-19 September, 2008 (2008) [Google Scholar]
- S. Lahaye, P. Bellier, H. Mao, A. Tsilanizara, Y. Kawamoto, First verification and validation steps of MENDEL release 1.0 cycle code system, In: Proc. Int. Conf. PHYSOR2014, Kyoto, Japan, Sept. 28 - Oct 3 (2014) [Google Scholar]
- E. Brun et al, Tripoli-4, CEA, EDF and AREVA reference Monte Carlo code, In: SNA+ MC 2013-Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo (2014), p. 06023 [Google Scholar]
- S. Lahaye, A. Tsilanizara, P. Bellier, T. Bittar, Implementation of a CRAM solver in MENDEL Depletion Code System, In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (2017) [Google Scholar]
- F. Gaudier, URANIE : The CEA/DEN Uncertainty and Sensitivity platform, In: Procedia - Social and Behavioral Sciences (2010), Vol. 2 [Google Scholar]
- J.B Blanchard, G. Damblin, J.M. Martinez, G. Arnaud, F. Gaudier, The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis, EPJ Nucl. Sci. Technol. 5, 4 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- S. Lahaye, J. Luo, P. Bellier, T.D. Huynh, A. Tsilanizara, Uncertainty quantification of isotopic densities in depleted fuel, In: ANS Best Estimate Plus Uncertainty International Conference (BEPU, 2018) [Google Scholar]
- M.J Bell, The ORNL Isotope Generation and Depletion Code. Union Carbide Corporation (Nuclear Division) (Oak Ridge National Laboratory, USA, 1973), ORNL-4628 [Google Scholar]
- I.C Gauld, G. Radulescu, G. Ilas, B.D. Murphy, M.L. Williams, D. Wiarda, Isotopic depletion and decay methods and analysis capabilities in SCALE, Nucl. Technol. 174, 169 (2011). https://doi.org/10.13182/NT11-3 [CrossRef] [Google Scholar]
- M.D DeHart, S.M. Bowman, Reactor Physics Methods and Analysis Capabilities in SCALE, Nucl. Technol. 174, 196 (2011). https://doi.org/10.13182/NT174-196 [CrossRef] [Google Scholar]
- M.A Jessee, W.A. Wieselquist, U. Mertyurek, K.S. Kim, T.M. Evans, S.P. Hamilton, et al. Lattice physics calculations using the embedded self-shielding method in Polaris, Part I: Methods and implementation, Ann. Nucl. Energy 150, 107830 (2021). https://www.sciencedirect.com/science/article/pii/S0306454920305284 [CrossRef] [Google Scholar]
- G. Ilas, J.R. Burns, B.D. Hiscox, U. Mertyurek, SCALE 6.2.4 Validation: Reactor Physics (Oak Ridge National Laboratory, 2022) ORNL/TM-2020/1500/v3. https://info.ornl.gov/sites/publications/Files/Pub138919.pdf [Google Scholar]
- J. Rhodes, K. Smith, D. Lee, CASMO-5 Development and Applications. In: Proceedings of the PHYSOR 2006, Sept. 10-14. Vancouver, BC, Canada (2006), p. B144. https://www.studsvik.com/SharepointFiles/CASMO-5%20Development%20and%20Applications.pdf [Google Scholar]
- T. Bahadir, S.O. Lindhal, Studsvik’s Next Generation Nodal Code SIMULATE-5, In: Proceedings of the conference on Advances in Nuclear Fuel Management IV (ANFM IV), April 12-15. Hilton Head, SC, USA (2009) [Google Scholar]
- S. Børresen, Spent Fuel Analyses based on In-Core Fuel Management Calculations, In: Proceedings of the PHYSOR 2004, April 25-29 (Chicago, Illinois, USA, 2004) [Google Scholar]
- T. Simeonov, C. Wemple, Development in Studsvik’s system for spent fuel analyses, In: Proceedings of the 26th AER symposium, Oct. 10-14. Helsinki, Finland (2016) [Google Scholar]
- M.B Chadwick, M. Herman, P. Obložinský, M.E. Dunn, Y. Danon, A.C. Kahler, et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nucl. Data Sheets 112, 2887 (2011), Special Issue on ENDF/B-VII.1 Library. https://www.sciencedirect.com/science/article/pii/S009037521100113X [CrossRef] [Google Scholar]
- R. Ferrer, J. Rhodes, Generation and initial validation of a new CASMO5 ENDF/B-VIII.0 nuclear data library. In: Proceedings of the PHYSOR 2020, March 29-April 2. Cambridge, UK (2020) [Google Scholar]
- R.J.J. Stammler, M.J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design (IAcademic Press, UK, 1983) [Google Scholar]
- J.K Tuli, Evaluated Nuclear Structure Data File (Brookhaven National Laboratory, NBNL-NCS-51655-01/02-Rev, 2001) [Google Scholar]
- A.J Koning, D. Rochman, J.C. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology, Nucl. Data Sheets 155, 1 (2019), Special Issue on Nuclear Reaction Data. https://www.sciencedirect.com/science/article/pii/S009037521930002X [CrossRef] [Google Scholar]
- A.J Koning, D. Rochman, Modern Nuclear Data Evaluation with the TALYS Code System, Nucl. Data Sheets 113, 2841 (2012), Special Issue on Nuclear Reaction Data. https://www.sciencedirect.com/science/article/pii/S0090375212000889 [NASA ADS] [CrossRef] [Google Scholar]
- M.J Berger, J.S. Coursey, M.A. Zucker, J. Chang, Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions (NIST Standard Reference Database, 2015). https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions [Google Scholar]
- T. Simeonov, C. Wemple, Update and evaluation of decay data for spent nuclear fuel analyses, EPJ Web Conf. 146, 09011 (2017). https://doi.org/10.1051/epjconf/201714609011 [CrossRef] [EDP Sciences] [Google Scholar]
- R.W Peele, F.C. Maienschein, The absolute spectrum of photons emitted in coincidence with thermal-neutron fission of Uranium-235 (Oak Ridge National Laboratory, 1970), ORNL-4457 [Google Scholar]
- A.C Kahler, The NJOY Nuclear Data Processing System, Version 2012, updated for NJOY2012.40 (Los Alamos National Laboratory, USA, 2014), LA-UR-12-27079 [Google Scholar]
- R.T Perry, W.B. Wilson, Neutron Production from (α,n) Reactions and Spontaneous Fission in ThO2, UO2, and (U,Pu)O2 Fuels (Los Alamos Scientific Laboratory, USA, 1981), LA-8869-MS [Google Scholar]
- M.G Stamatelatos, T.R. England, Accurate Approximations to Average Beta-Particle Energies and Spectra, Nucl. Sci. Eng. 63, 204 (1977). https://doi.org/10.13182/NSE77-A27028 [CrossRef] [Google Scholar]
- G.K Schenter, P. Vogel, A Simple Approximation of the Fermi Function in Nuclear Beta Decay, Nucl. Sci. Eng. 83, 393 (1983). https://doi.org/10.13182/NSE83-A17574 [CrossRef] [Google Scholar]
- R.F Burstall, FISPIN-A computer code for nuclide inventory calculations (UKAEA Risley Nuclear Power Development Establishment, 1979), ND-R-328 [Google Scholar]
- J. Sidell, EXTRA: A digital computer program for the solution of stiff sets of ordinary initial value, first order differential equations (UKAEA, 1976), AEEW-R-799 [Google Scholar]
- D. Parker, R. Mills, FISPIN10 validation review, BNFL Research and Development (BNFL, 2001), RAT 1972 Issue 2. https://www.oecd-nea.org/science/wpncs/ADSNF/reports/Magnox/FISPIN.pdf [Google Scholar]
- F. Alvarez-Velarde, E.M. Gonzàlez-Romero, I.M. Rodríguez, Validation of the burn-up code EVOLCODE 2.0 with PWR experimental data and with a Sensitivity/Uncertainty analysis, Ann. Nucl. Energy 73, 175 (2014). https://doi.org/10.1016/j.anucene.2014.06.049 [CrossRef] [Google Scholar]
- J. Sanz, O. Cabellos, N. Garcia-Herranz, ACAB-2008: Activation Abacus Code V2008 (NEA Data Bank, 2008) NEA-1839 [Google Scholar]
- A.G Croff, A User’s Manual for the ORIGEN2 Computer Code (1980) ORNL/TM-7175. [Google Scholar]
- J.L Conlin, F.B. Brown, A.C. Kahler, M.B. Lee, D.K. Parsons, M.C. White, Updating the Format of ACE Data Tables (Los Alamos National Laboratory, 2012), LA-UR-12-22033 [Google Scholar]
- W. Haeck, B. Decheneaux, VESTA User’s Manual - Version 2.2.0, IRSN, France, 2017, PSN-EXP/SNC/2017-00251 [Google Scholar]
- R. Ichou, B. Decheneaux, On the validation of VESTA 2.2.0 using the ARIANE-GU3 sample. EPJ Web Conf. 247 10005 (2021). https://doi.org/10.1051/epjconf/202124710005. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015). https://doi.org/10.1016/j.anucene.2014.08.024 [CrossRef] [Google Scholar]
- J. Leppänen, M. Pusa, E. Fridman, Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 96, 126 (2016). https://doi.org/10.1016/j.anucene.2016.06.007 [CrossRef] [Google Scholar]
- J. Leppänen, V. Valtavirta, A. Rintala, V. Hovi, R. Tuominen, J. Peltonen, et al. Current Status and On-Going Development of VTT’s Kraken Core Physics Computational Framework. Energies 15, 876 (2022). https://doi.org/10.3390/en15030876 [CrossRef] [Google Scholar]
- J. Leppänen, Methodology, applications and performance of the CAD-based geometry type in the serpent 2 Monte Carlo code, Ann. Nucl. Energy 176, 109259 (2022). https://doi.org/10.1016/j.anucene.2022.109259 [CrossRef] [Google Scholar]
- M. Pusa, J. Leppänen, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng. 164, 140 (2010). https://doi.org/10.13182/NSE09-14 [CrossRef] [Google Scholar]
- K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, Validation of a continuous-energy monte carlo burn-up code mvp-burn and its application to analysis of post irradiation experiment, J. Nucl. Sci. Technol. 37, 128 (2000) [CrossRef] [Google Scholar]
- T. Kashima, K. Suyama, T. Takada, SWAT4.0 - The Integrated Burnup Code System Driving Continuous Energy Monte Carlo Codes MVP, MCNP and Deterministic Calculation Code SRAC (Japan Atomic Energy Agency, 2015), JAEA-Data/Code 2014-028 [Google Scholar]
- Y. Nagaya, K. Okumura, K. Sakurai, T. Mori, MVP/GMVP Version 3 : General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations Based on Continuous Energy and Multigroup Methods (Japan Atomic Energy Agency, 2017), JAEA-Data/Code 2016-018 [Google Scholar]
- K. Okumura, T. Kugo, K. Kaneko, K. Tsuchihara, SRAC2006: A Comprehensive Neutronics Calculation Code System (Japan Atomic Energy Agency, 2007), JAEA-Data/Code 2007-004 [Google Scholar]
- K. Okumura, K. Sugino, K. Kojima, T. Jin, T. Okamoto, J. Katakura, A Set of ORIGEN2 cross section libraries based on JENDL-4.0; ORLIBJ40 (Japan Atomic Energy Agency, 2013), JAEA-Data/Code 2012-032 [Google Scholar]
- K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, F. Minato, S. Chiba, Evaluation of fission product yields and associated covariance matrices, J. Nucl. Sci. Technol. 58, 151 (2021) [CrossRef] [Google Scholar]
- P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, K.P. Rykaczewski, J.L. Tain, et al. Development of a Reference Database for Beta-Delayed Neutron Emission, Nucl. Data Sheets 173, 144 (2021), Special Issue on Nuclear Reaction Data. https://www.sciencedirect.com/science/article/pii/S0090375221000168 [CrossRef] [Google Scholar]
- K. Nishihara, H. Iwamoto, K. Suyama, Estimation of fuel compositions in Fukushima-Daiichi Nuclear Power Plant (Japan Atomic Energy Agency, JAEA-Data/Code 2012-018, 2012) [Google Scholar]
- M. Suzuki, A Development of Multi-Physics Burnup Analysis System (1) An Overall Plan and Implementation of Burnup Calculation Module. In: Proceedings of Annual Meeting of the Atomic Energy Society of Japan, 2021 March 17-19. [in Japanese] (2021) [Google Scholar]
- M. Suzuki, A development of Multi-Physics Burnup Analysis System (2) Implementation of Burnup Analysis Function with Fuel Assembly Geometry, In: Proceedings of Annual Meeting of the Atomic Energy Society of Japan, 2022 March 16-18, [in Japanese] (2022) [Google Scholar]
- M. Suzuki, S. Sato, A development of Multi-Physics Burnup Analysis System (3) Burnup Calculation Applying Exact Resonance Elastic Scattering model. In: Proceedings of Annual Meeting of the Atomic Energy Society of Japan, 2022 March 16-18, [in Japanese] (2022) [Google Scholar]
- M. Suzuki, K. Inagaki, S. Sato, S. Kitajima, A development of Multi-Physics Burnup Analysis System (4) Implementation of Thermal-Hydraulics Calculation Function. In: Proceedings of Fall Meeting of the Atomic Energy Society of Japan, 2022 September 7-9, [in Japanese] (2022) [Google Scholar]
- K. Okumura, K. Kojima, O. Okamoto, Development of the burn-up chain data ChainJ40 based on JENDL-4.0, In: Proceedings of Annual meeting of the Atomic Energy Society of Japan, 2012 Mar 19-21, [CD-ROM, in Japanese] (2012) [Google Scholar]
- T. Mori, Y. Nagaya, Comparison of Resonance Elastic Scattering Models Newly Implemented in MVP Continuous-Energy Monte Carlo Code, J Nucl. Sci. Technol. 46, 793(2009) [CrossRef] [Google Scholar]
- N. Garcia-Herranz, O. Cabellos, J. Sanz, Applicability of the MCNP-ACAB System to Inventory Prediction in High Burn-up Fuels: Sensitivity/Uncertainty Estimates. In: Proceedings of the International Conferecence on Mathematics and Computation, M&C2005 (Avignon, France, 2005) [Google Scholar]
- P. Ortego, C. Töre, A. Crespo, P. Mata, L. Garcia-Delgado, O. Cabellos, et al. Calculation with MCNP of Reactivity and Power Distribution of Atrium-10XP Design and Comparison with Isotopics Obtained with Monteburns, MCNP-ACAB and CASMO4, In: International Meeting on LWR Fuel Performance (Salamanca, Spain, 2006) [Google Scholar]
- N. Garcia-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Ann. Nucl. Energy 35, 714 (2008). https://www.sciencedirect.com/science/article/pii/S0306454907001958 [CrossRef] [Google Scholar]
- O. Cabellos, V. de Fusco, C.J. Diez de la Obra, J.S. Martinez, E. Gonzalez, D. Cano-Ott, et al. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments, Nucl. Data Sheets 118, 472 (2014). https://www.sciencedirect.com/science/article/pii/S0090375214001409 [CrossRef] [Google Scholar]
- ASN, IRSN, Qualification des outils de calcul scientifique utilisés dans la démonstration de sûreté nucléaire - première barrière (Autorité de Sûreté Nucléaire, France, 2017), Guide numéro 28. https://www.irsn.fr/sites/default/files/documents/expertise/demarches-de-surete/ASN_Guide-n28_Qualification-outils-calculs-scientifiques.pdf [Google Scholar]
- American Nuclear Society, Validation Of Neutron Transport Methods For Nuclear Criticality Safety, AANSI/ANS-8.24-2017 (R2023) (2017) [Google Scholar]
- International Organization for Standardization, Nuclear energy, nuclear technologies, and radiological protection Vocabulary Part 3: Nuclear fuel cycle (2015) [Google Scholar]
- For Nuclear Regulation Office, Validation of Computer Codes and Calculation Methods - Nuclear Safety Technical Assessment Guide. (Office for Nuclear Regulation, UK, 2019), NS-TAST-GD-042 Revision 5. https://www.onr.org.uk/operational/tech_asst_guides/ns-tast-gd-042.pdf [Google Scholar]
- A. Stankovskiy, G. Van den Eynde, T. Vidmar, Development and validation of ALEPH Monte Carlo burnup code, In: Proceedings of the International Workshop NEMEA-6, NEA/NSC/DOC(2011)4, 25-28 October (Krakow, Poland, 2010), pp. 161–169 [Google Scholar]
- L. Massinon, Validation of ALEPH2 depletion code on the spent fuel isotopic content of samples irradiated in Gösgen PWR core. Ecole polytechnique de Louvain (Louvain, Belgium, 2018), UCL 13305. http://hdl.handle.net/2078.1/thesis:13305 [Google Scholar]
- A. Stankovskiy, G. Van den Eynde, Validation of ALEPH2 code on the isotopic content of high burnup PWR samples from Vandellos-II reactor, SCK-CEN (2017), SCK-CEN-R-6291 and SCK-CEN/21547854 [Google Scholar]
- D. Gérard, Validation expérimentale du code ALEPH2 dévolution du combustible pour le calcul de chaleur résiduelle. Ecole polytechnique de Louvain (Louvain, Belgium, 2018), UCL 17217. http://hdl.handle.net/2078.1/thesis:17217 [Google Scholar]
- M. Broustaut, Benchmarking of the ALEPH Burn-Up code (SCK-CEN; 2012), SCK-CEN/36467063 [Google Scholar]
- D. Rochman, A. Vasiliev, H. Ferroukhi, M. Seidl, J. Basualdo, Improvement of PIE analysis with a full core simulation: The U1 case. Ann. Nucl. Energy 148, 107706 (2020). https://www.sciencedirect.com/science/article/pii/S0306454920304047 [CrossRef] [Google Scholar]
- T. Simeonov, C. Wemple, A procedure for verification of Studsvik’s spent nuclear fuel code SNF, Kerntechnik 84, 246 (2019). https://doi.org/10.3139/124.190005 [cited 2023-05-01] [Google Scholar]
- T. Simeonov, C. Wemple, Advances in Studsvik’s system for spent fuel analysis. EPJ Web Conf. 247, 02021 (2021). https://doi.org/10.1051/epjconf/202124702021 [CrossRef] [EDP Sciences] [Google Scholar]
- S. Tittelbach, T. Mispagel, P.W. Phlippen, Validation of SCALE/TRITON and HELIOS for prediction of isotopic inventories of high burnup LWR fuel, In: Advances in Nuclear Fuel Management IV (ANFM 2009) Hilton Head Island, South Carolina, USA, April 12-15, 2009, on CD-ROM (American Nuclear Society, LaGrange Park, IL, 2009) [Google Scholar]
- J.C Benoit, Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package, In: Proceedings of the PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, April 15-20 (Knoxville, Tennessee, USA, 2012) [Google Scholar]
- H.A Knapp, Earings before the special subcommittee on radiation of the joint committee on atomic energy congress of the United States; 86th congress, first session, Fallout from Nuclear Weapons Tests (1959), Vol. 3 [Google Scholar]
- D.R Patterson, R.I. Schlitz, School of Nuclear Science and Engineering: The Determination of Heat Generation in Irradiated Uranium, Expt. No.11 (Argonne National Laboratory, 1955) [Google Scholar]
- M.M. El-Wakil, Nuclear Heat Transport (International Textbook Company, 1971) [Google Scholar]
- Y. Nauchi, S. Sato, A. Sasahara, A Numerical simulation on Bremsstrahlung Ray Measurement for β-Decay in Spent Nuclear Fuel. In: Proceedings of the 2021 Fall meeting of Atomic Energy Society of Japan (8-10 September, 2021) [Google Scholar]
- G. Ilas and J. Burns, SCALE 6.2.4 Validation for Light Water Reactor Decay Heat Analysis, Nucl. Technol. 208, 403 (2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.