Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Article Number 4
Number of page(s) 17
DOI https://doi.org/10.1051/epjn/2024004
Published online 29 April 2024
  1. IAEA, Bituminization of radioactive wastes (1970) [Google Scholar]
  2. IAEA, Bituminization processes to condition radioactive wastes, 352 (1993) [Google Scholar]
  3. B. Nagy, Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa, Geology, 0-3 (1993) [Google Scholar]
  4. J.C. Petit, Natural analogues for the design and performance assessment of radioactive waste forms: a review, J. Geochem. Explor. 46, 1 (1992) [Google Scholar]
  5. S.V. Stefanovsky et al. "Nuclear waste forms." Geological Society, London, Special Publications 236.1, 37 (2004) [Google Scholar]
  6. J. Sercombe, Dossier de référence bitume: Synthèse des connaissances sur le comportement long terme des colis bitumés (2004) [Google Scholar]
  7. C. Tiffreau, M.F. Libert, P.P. Vistoli, J. Sercombe, Dossier De Synthese Sur Le Comportement a Long Terme Des Colis: Dossier Operationnel Bitume (2004) [Google Scholar]
  8. ASN, Revue externe sur la gestion des déchets bitumés Rapport final (2019) [Google Scholar]
  9. IRSN, Avis relatif au dossier Projet Cigéo - Dossier d'Options de Sûreté (2017) [Google Scholar]
  10. C.M. Jantzen, W.E. Lee, M.I. Ojovan, 6 - Radioactive waste (RAW) conditioning, immobilization, and encapsulation processes and technologies: overview and advances, in Woodhead Publishing Series in Energy, Radioactive Waste Management and Contaminated Site Clean-Up (Woodhead Publishing, 2013), pp. 171–272 [Google Scholar]
  11. D.C. Phillips, J.W. Hitchon, D.I. Johnson, J.R. Matthews, The radiation swelling of bitumens and bitumenised wastes, J. Nucl. Mater. 134, 2 (1984) [Google Scholar]
  12. S. Camaro, Rapport technique: Effets des rayonnements à long terme sur les enrobés (1992) [Google Scholar]
  13. M. Porto et al. "Bitumen and bitumen modification: A review on latest advances." Applied Sciences 9.4, 742 (2019) [Google Scholar]
  14. D.G. Bennett, J.J.W. Higgo, and S.M. Wickham. "Review of waste immobilisation matrices." Nirex Limited, United Kingdom (2001) [Google Scholar]
  15. V. Wasselin, M. Maître, I. Kutina, Deliverable 9.5: Overview of issues related to challenging wastes (2022) [Google Scholar]
  16. J. Read, D. Whiteoak. The shell bitumen handbook. Thomas Telford, 2003. [Google Scholar]
  17. E. Valcke, F. Rorif, S. Smets, Ageing of EUROBITUM bituminised radioactive waste: An ATR-FTIR spectroscopy study, J. Nucl. Mater. 393, 175 (2009) [Google Scholar]
  18. Immobilisation of radioactive waste in bitumen, Chapter 18 of: An Introduction to Nuclear Waste Immobilisation (Elsevier, 2109), https://doi.org/10.1016/B978-0-08-102702-8.00018-2 [Google Scholar]
  19. L. Abrahamsen-Mills, J.S. Small, Chapter 1 - Organiccontaining nuclear wastes and national inventories across Europe, in The Microbiology of Nuclear Waste Disposal (Elsevier, 2021), pp. 1–20 [Google Scholar]
  20. M. Pettersson, M. Elert, Charaterisation of bitumenised waste in SFR 1 (2001) [Google Scholar]
  21. L. Fuks, I. Herdzik-koniecko, K. Kiegiel, A. Miskiewicz, Methods of thermal treatment of radioactive waste, Energies 15, 375 (2022) [Google Scholar]
  22. IAEA, Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers (2002) [Google Scholar]
  23. K. Mijnendonckx, et al. "DELIVERABLE 1.3." (2018) [Google Scholar]
  24. IRSN, Comportement physico-chimique des fûts d'enrobé bitumineux (2018) [Google Scholar]
  25. I. Walczak. "Détermination des produits organiques d'ltérations chimiques et radiochimiques du bitume." Applications aux enrobés bitumes, PhD thesis, Institut National des Sciences Appliquées de Lyon, 2000 [Google Scholar]
  26. S.G. Burnay, Comparative evaluation of α and γ radiation effects in a bitumenisate, Nucl. Chem. Waste Manag. 7, 107 (1987) [Google Scholar]
  27. D. Lesueur, La Rhéologie des Bitumes: Principes et Modification, Rhéologie 2, 1 (2002) [Google Scholar]
  28. D. Lesueur, The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification, Adv. Colloid Interface Sci. 145, 42 (2009) [Google Scholar]
  29. M. Mouazen, Évolution Des Propriétés Rhéologiques Des Enrobés Bitume, Vers Une Loi Vieillissement/Viscosité, Diss. École Nationale Supérieure des Mines de Paris (2011) [Google Scholar]
  30. K. Mijnendonckx, N.M. Bassil, S. Nixon, A. Boylan, N. Leys, Organic Materials and their Microbial Fate in Radioactive Waste, (Elsevier Inc., 2021) [Google Scholar]
  31. L. De Bock, S. Vansteenkiste, and A. Vanelstraete. "Categorisation and analysis of rejuvenators for asphalt recycling." A. De Swaef, Woluwedal 42-1200 (2020) [Google Scholar]
  32. I.A. Sobolev, A.S. Barinov, M.I. Ojovan, N.V. Ojovan, I.V. Startceva, Z.I. Golubeva, Long term behaviour of bitumen waste form, Mat. Res. Soc. Symp. Proc. 608, 571 (2000) [Google Scholar]
  33. M. Ferry, Y. Ngono, Energy transfer in polymers submitted to ionizing radiation: A review, Radiat. Phys. Chem. 180, 109320 (2021) [Google Scholar]
  34. Andra, Colis d'enrobés bitumineux produits à partir d'effluents traités dans la STE3 (Orano/La Hague), https://inventaire.andra.fr/families/colisdenrobes-bitumineux-produits-partir-deffluentstraites-dans-la-ste3-oranola-hague [Google Scholar]
  35. S.T. Kosiewicz, Gas generation from the alpha radiolysis of bitumen, Nucl. Chem. Waste Manag. 1, 139 (1980) [Google Scholar]
  36. S. Kowa, N. Kerner, D. Hentschel, W. Kluger, Investigations of the alpha radiolysis, No. KFK-3241, Kernforschungszentrum Karlsruhe GmbH (1983) [Google Scholar]
  37. R. Tabardel-Brian, J. Rodier, G. Lefillatre, Essais d'irradiation de bitume et d'enrobés bitumineux par Centre de Production de Plutonium de Marcoule, Rapport CEA-R-3730 (1969) [Google Scholar]
  38. E. Chailleux, F. Hammoum. "La structure chimique des bitumes pétroliers." L'actualité chimique sous l'égide de la Société Chimique de France 385 (2014) [Google Scholar]
  39. S. Dojiri, H. Matsuzuru, N. Moriyama, Safety evaluation of asphalt products, (I): Radiation decomposition of asphalt products, J. Nucl. Sci. Technol. 14, 134 (1977) [Google Scholar]
  40. P. Redelius, H. Soenen, Relation between bitumen chemistry and performance, Fuel 140, 34 (2015) [Google Scholar]
  41. P. Landais, Organic geochemistry of sedimentary uranium ore deposits, Ore Geol. Rev. 11, 3 (1996) [Google Scholar]
  42. R.F. Meyer, E.D. Attanasi, P.A. Freeman. "Heavy oil and natural bitumen resources in geological basins of the world: Map showing klemme basin classification of sedimentary provinces reporting heavy oil or natural bitumen." US Geol. Surv. Open-File Rep2007-1084 (2007) [Google Scholar]
  43. K. H. Hellmuth, (1989). The long-term stability of natural bitumen (No. STUK-B-VALO-59). Finnish Centre for Radiation and Nuclear Safety (STUK). [Google Scholar]
  44. P. Holliger, et al. "Organic matter and uraninite from the Oklo natural fission reactors: natural analogue of radioactive waste containing bitumen and UO2 irradiated fuel." EUR (Luxembourg) (1993) [Google Scholar]
  45. Y. Chen et al. Investigation of bituminized waste products swelling behavior due to water uptake under free leaching conditions: Experiments and modeling. Int. J. Numer. Anal. Methods Geomech. 47, 3351 (2023) [Google Scholar]
  46. J. Sercombe, B. Gwinner, C. Tiffreau, B. Simondi-Teisseire, F. Adenot, Modelling of bituminized radioactive waste leaching. Part I: Constitutive equations. J. Nucl. Mater. 349, 96 (2006) [Google Scholar]
  47. B. Gwinner, J. Sercombe, C. Tiffreau, B. Simondi-Teisseire, I. Felines, F. Adenot, Modelling of bituminized radioactive waste leaching. Part II: Experimental validation, J. Nucl. Mater. 349, 107 (2006) [Google Scholar]
  48. M.I. Ojovan, N.V. Ojovan, Z.I. Golubeva, I.V. Startceva, A.S. Barinov, Aging of the bitumen waste form in wet repository conditions, Mat. Res. Soc. Symp. Proc. 713, 713 (2002) [Google Scholar]
  49. K.P. Zakharova, O.L. Masanov, Bituminization of liquid radioactive wastes. Safety assessment and operational experience, At. Energy 89, 135 (2000) [Google Scholar]
  50. A.S. Barinov, I.A. Sobolev, M.I. Ozhovan, Mechanisms of removal of components of liquid radioactive-wastes as a function of the salt filling of bituminous compounds, At. Energ. 65, 977 (1988) [Google Scholar]
  51. B. Nagy, F. Gauthier-Lafaye, P. Holliger, D.W. Davis, D.J. Mossman, J.S Leventhal, J. Parnell, Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors, Nature 354, 472 (1991) [Google Scholar]
  52. K.-H. Hellmuth, Natural analogues of bitumen and bituminized radioactive waste, No. STUK-B-VALO-58, Finnish Centre for Radiation and Nuclear Safety (1989) [Google Scholar]
  53. F. Gauthier-Lafaye, P. Holliger, P.-L. Blanc, Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a 'critical event' in a geologic system, Geochim. Cosmochim. Acta 60, 4831 (1996) [Google Scholar]
  54. W.R. Alexander, H.M. Reijonen, I.G. Mckinley, Natural analogues: Studies of geological processes relevant to radioactive waste disposal in deep geological repositories, Swiss J. Geosci. 108, 75 (2015) [Google Scholar]
  55. H. Hidaka, T. Sugiyama, M. Ebihara, P. Holliger, Isotopic evidence for the retention of 90Sr inferred from excess 90Zr in the Oklo natural fission reactors: Implication for geochemical behaviour of fissiogenic Rb, Sr, Cs and Ba, Earth Planet. Sci. Lett. 122, 173 (1994) [Google Scholar]
  56. J. Parnell, H. Kucha, P. Landais, Bitumens in Ore Deposits (Springer Berlin, Heidelberg, 2012) [Google Scholar]
  57. N.K. Gulieva, G.M. Gatamkhanova, I.I. Mustafaev, radiation resistance of bituminous waterproofing materials, High Energy Chem. 54, 336 (2020) [Google Scholar]
  58. N. Mokni, S. Olivella, X. Li, S. Smets, E. Valcke, A. Mariën, Deformation of bitumen based porous material: Experimental and numerical analysis, J. Nucl. Mater. 404, 144 (2010) [Google Scholar]
  59. M. Mouazen et al., Caractérisation rhéologique de bitumes 70/100 utilisé comme matrice de confinement de déchets radioactifs, 44ème Colloque annuel du Groupe Français de Rhéologie, Nov 2009, Strasbourg, France (2011) [Google Scholar]
  60. M. Mouazen, A. Poulesquen, F. Bart, J. Masson, M. Charlot, B. Vergnes, Rheological, structural and chemical evolution of bitumen under gamma irradiation, Fuel Process. Technol. 114, 144 (2013) [Google Scholar]
  61. N. Larcher, Contribution à la caractérisation des matériaux au comportement viscoélastique par méthode ultrasonore Application aux matériaux bitumineux, Diss. Limoges (2014) [Google Scholar]
  62. M. Mouazen, A. Poulesquen, F. Bart, B. Vergnes, Effect of γ irradiation on nuclear bituminized waste products (BWP): X-ray microtomography and rheological characterization, J. Nucl. Mater. 419, 24 (2011) [Google Scholar]
  63. J.S. Shon, S.H. Lee, H.S. Park, K.J. Kim, D.K. Min, The improvement of the mechanical stability and leachability of bituminized waste form of radioactive ash by addition of reused polyethylene, Korean J. Chem. Eng. 18, 668 (2001) [Google Scholar]
  64. P.M. Claudy, J.M. Létoffé, D. Martin, J.P. Planche, Thermal behavior of asphalt cements, Thermochim. Acta 324, 203 (1998) [Google Scholar]
  65. J.P. Planche, P.M. Claudy, J.M. Létoffé, D. Martin, Using thermal analysis methods to better understand asphalt rheology, Thermochim. Acta 324, 223 (1998) [Google Scholar]
  66. A. Marchal, Modélisation du gonflement radiolytique d 'enrobés bitumineux (2015) [Google Scholar]
  67. H. Duschner, W. Schorr, K. Strake, Generation and diffusion of radiolysis gases in bituminized radioactive waste, Radiochim. Acta 137, 133 (1977) [Google Scholar]
  68. B.L. Anderson, M.K. Sheaffer, L.E. Fischer, Hydrogen Generation in TRU Waste Transporation Packages Office of Nuclear Material Safety and Safeguards, No. UCRL-ID-138352. (Lawrence Livermore National Lab., 2000) [Google Scholar]
  69. F. Crumiere, Études de l'effet de TEL lors de la radiolyse de l'eau: rendements radiolytiques de l'hydrogène moléculaire, Diss. Nantes (2012) [Google Scholar]
  70. B. Pérot et al., The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France, EPJ Nucl. Sci. Technol. 4, 3 (2018) [Google Scholar]
  71. D. Lambertin, C. Caudit Coumes, F. Frizon, C. Joussot-Dubien, Matériau pour le piégeage d'hydrogène, procédé de préparation et utilisations, Patent EP2367627A1 (2009) [Google Scholar]
  72. D. Chartier, C. Joussot-Dubien, C. Pighini, E. Sciora, F. Bouyer, Hydrogen trapping: Synergetic effects of inorganic additives with cobalt sulfide absorbers and reactivity of cobalt polysulfide, Int. J. Hydrogen Energy, 37, 13594 (2012) [Google Scholar]
  73. C. Loussot et al., Trapping of radiolytic hydrogen by amorphous cobalt oxysulfide, J. Nucl. Mater. 359, 238 (2006) [Google Scholar]
  74. C. Loussot, P. Afanasiev, M. Vrinat, H. Jobic, P.C. Leverd, Amorphous cobalt oxysulfide as a hydrogen trap, Chem. Mater. 18, 5659 (2006) [Google Scholar]
  75. C. Pichon, N. Millard-Pinard, F. Valdivieso, A. Chevarier, M. Pijolat, P.C. Leverd, Effect of cobalt hydroxo-sulphide on organic material radiolysis, J. Nucl. Mater. 362, 502 (2007) [Google Scholar]
  76. C. Pichon, Inhibition de la production d'hydrogène radiolytique dans les déchets nuclèaires de type enrobés bitumineux: étude de l'interaction entre l'hydrogène et l'hydroxosulfure de cobalt. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006. [Google Scholar]
  77. D. Chartier et al., Evidence for H2S gas as an intermediate species in the reaction mechanism of trapping hydrogen by cobalt disulfide, Int. J. Hydrogen Energy 36, 12121 (2011) [Google Scholar]
  78. A. Marchal, B. Vergnes, A. Poulesquen, R. Valette, Competitive growth and rising of bubbles in a yield stress fluid. Consequences on the macroscopic swelling of bitumen drums, J. Nonnewton. Fluid Mech. 234, 162 (2016) [Google Scholar]
  79. M. Dobrowolska et al. "A novel technique for finding gas bubbles in the nuclear waste containers using muon scattering tomography." Journal of Instrumentation 13.5, P05015 (2018) [Google Scholar]
  80. N. Mori et al. "Feasibility study of detection of high-Z material in nuclear waste storage facilities with atmospheric muons." 34th International Cosmic Ray Conference (ICRC2015). Vol. 34 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.