Open Access
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Article Number 1
Number of page(s) 10
Published online 19 March 2024
  1. IAEA, Bituminization processes to condition radioactive wastes, Technical reports series, No 352 (1993) [Google Scholar]
  2. B. Nagy, F. Gauthier Lafaye, P. Holliger, D. J. Mossman, J. S. Leventhal, M. J. Rigali, Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon Africa Geol. 21, 655 (1993) [Google Scholar]
  3. J. C. Petit, Natural analogues for the design and performance assessment of radioactive waste forms: a review, J. Geochem. Explor., 46, 1 (1992) [CrossRef] [Google Scholar]
  4. J. Sercombe, F. Adenot, P. P. Vistoli, S. Parraud, C. Riglet-Martial, B. Gwinner, I. Felines, C. Tiffreau, M. Libert, Rapport Technique DTCD/2004/09. Dossier de référence bitume : synthèse des connaissances sur le comportement à long terme des colis bitumés (2004) [Google Scholar]
  5. K. Mijnendonckx, A. Van Gompe, I. Coninx, N. Bleyen, N. Leys. Radiation and microbial degradation of bitumen. MIND (Microbiology In Nuclear waste Disposal) Project. Grant Agreement: 661880. Deliverable 1.3 (2018) [Google Scholar]
  6. ASN, Revue externe sur la gestion des déchets bitumés. Rapport final (2019) [Google Scholar]
  7. IRSN. Avis relatif au dossier « Projet Cigéo – Dossier d’Options de Sûreté » (2017) [Google Scholar]
  8. W. Schorr, K. Starke, H. Dushner, Generation and diffusion of radiolysis gases in bituminized radioactive waste, Radiochim. Acta. 137, 133 (1977) [Google Scholar]
  9. N. K. Gulieva, G. M. Gatamkhanova, I. I. Mustafaev, Radiation resistance of bituminous waterproofing materials, High Energy Chem. 54, 336 (2020) [CrossRef] [Google Scholar]
  10. M. Mouazen, A. Poulesquen, B. Vergnes, Influence of thermomechanical history on chemical and rheological behavior of bitumen, Energy Fuels 25, 4614 (2011) [CrossRef] [Google Scholar]
  11. M. Mouazen, A. Poulesquen, F. Bart, B. Vergnes, Effect of γ irradiation on nuclear bituminized waste products (BWP): X-ray microtomography and rheological characterization, J. Nucl. Mat. 419, 24 (2011) [CrossRef] [Google Scholar]
  12. M. Mouazen, A. Poulesquen, F. Bart, J. Masson, M. Charlot, B. Vergnes, Rheological, structural and chemical evolution of bitumen under gamma irradiation, Fuel Proc. Tech. 114, 144 (2013) [CrossRef] [Google Scholar]
  13. M. Mouazen, A. Poulesquen, B. Vergnes, Correlation between thermal and rheological studies to characterize the behavior of bitumen, Rheol. Acta 50, 169 (2011) [CrossRef] [Google Scholar]
  14. M. Mouazen, A. Poulesquen, B. Vergnes, Caractérisation rhéologique de bitume 70/100 utilisé comme matrice de confinement de déchets radioactifs, 44ème Colloque annuel du Groupe Français de Rhéologie, Strasbourg (2009) [Google Scholar]
  15. A. Marchal, B. Vergne, A. Poulesquen, R. Valette, Competitive growth and rising of bubbles in a yield stress fluid. Consequences on the macroscopic swelling of bitumen drums, J. Nonnewton. Fluid Mech. 234, 162 (2016) [CrossRef] [Google Scholar]
  16. F. Koksel, M. G. Scanlona, J. H. Page, Ultrasound as a tool to study bubbles in dough and dough mechanical properties: A review, Food Res. Int. 89, 74 (2016) [CrossRef] [Google Scholar]
  17. M. J. W. Povey, T. J. Mason, Ultrasound in food processing. (Blackie Academic, 1992) [Google Scholar]
  18. F. S. Crawford. The Hot Chocolate Effect, Am. J. Phys. 50, 398 (1982) [CrossRef] [Google Scholar]
  19. P. S. Wilson, R. A. Roy, An audible demonstration of the speed of sound in bubbly liquids, Am. J. Phys. 76, 975 (2008) [CrossRef] [Google Scholar]
  20. Z. Travnicek, A. I. Fedorchenko, M. Pavelka, J. Hruby, Visualization of the hot chocolate sound effect by spectrograms, J. Sound. Vibr. 331, 5387 (2012) [CrossRef] [Google Scholar]
  21. L. D’Hondt, M. Cavaro, C. Payan, S. Mensah. Acoustical characterisation and monitoring of microbubble clouds, Ultrasonics 96, 10 (2019) [Google Scholar]
  22. N. Larcher, Contribution à la caractérisation des matériaux au comportement viscoélastique par méthode ultrasonore. Application aux matériaux bitumineux, Thèse de l’Université de Limoges (2014) [Google Scholar]
  23. A. Rabbani, D. R. Schmitt, Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen, Fuel 232, 506 (2018) [CrossRef] [Google Scholar]
  24. A. Rabbani, D. R. Schmitt, The longitudinal modulus of bitumen: Pressure and temperature dependencies. Geophysics 84, 139 (2019) [Google Scholar]
  25. D. Laux, G. Chabanol, G. Sapey, J-Y. Ferrandis, E. Rosenkrantz, Shear and Longitudinal attenuations and quality factors of poly(methyl metacrylate) (PMMA) from 20 kHz to 12 MHz investigation with ultrasonic spectroscopy, Ultrasonics 134, 107104 (2023) [Google Scholar]
  26. J. E. Carlson, J. Van Deventer, A. Scolan, C. Carlander, Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems, IEEE Symp. Ultrason. 1, 885 (2003) [Google Scholar]
  27. D. Laux, M. Valente, J-Y. Ferrandis, N. Talha, O. Gibert, A. Prades, Shear viscosity investigation on mango juice with high frequency longitudinal ultrasonic waves and rotational viscosimetry, Food Biophys., 8, 233 (2013) [CrossRef] [Google Scholar]
  28. M. A. Mograne, J-Y. Ferrandis, D. Laux, Instrumented test tube for rapid rheological behaviour of liquids estimation, J. Food Eng. 247, 126 (2019) [CrossRef] [Google Scholar]
  29. A. S. Dukhin, P. J. Goetz, Bulk viscosity and compressibility measurement using acoustic spectroscopy, J. Chem. Phys. 130, 124519 (2009) [CrossRef] [Google Scholar]
  30. G. Lévêque, E. Rosenkrantz, D. Laux, Correction of diffraction effects in sound velocity and absorption measurements, Meas. Sci. Technol. 18, 3458 (2007) [CrossRef] [Google Scholar]
  31. A. M. Bianchi, Y. Fautrelle, J. Etay, Transferts Thermiques. Presses polytechniques et Universitaires romandes (2004) [Google Scholar]
  32. J. D. Ferry, Viscoelastic Properties of Polymers, Third Edition (John Wiley & Sons, 1980) [Google Scholar]
  33. G. Schramm, A Practical Approach to Rheology and Rheometry, 2nd edn. (Thermo Electron, 1994) [Google Scholar]
  34. R. Tanaka, E. Sato, J. E. Hunt, R. E. Winans, S. Sato, T. Takanohashi, Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray Scattering, Energy Fuels 18, 1118 (2004) [CrossRef] [Google Scholar]
  35. J. Ekblad, R. Lundström, E. Simonsen, Water susceptibility of asphalt mixtures as influenced by hydraulically active fillers, Mat. Struct. 48, 1135 (2015) [CrossRef] [Google Scholar]
  36. K. W. Commander, A. Prosperetti, Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Am. 85, 732 (1989) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.