Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 10, 2024
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjn/2024011 | |
Published online | 11 October 2024 |
- J. Huyghe, et al., Integral data assimilation of the MERCI-1 experiment for the nuclear data associated with the PWR decay heat computation, EPJ Web Conf. 211, 07004 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- G. Henning, et al., Need for precise nuclear structure data for reactor studies, EPJ Nucl. Sci. Technol. 10, 6 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
- H.R. Doran, A.J. Cresswell, D.C.W. Sanderson, G. Falcone, Nuclear data evaluation for decay heat analysis of spent nuclear fuel over 1–100 k year timescale, Eur. Phys. J. Plus 137, 665 (2022) [CrossRef] [Google Scholar]
- D. Siefman, et al., Data assimilation of post-irradiation examination data for fission yields from GEF, EPJ Nucl. Sci. Technol. 6, 52 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
- A. Rizzo, et al., Feedback from experimental isotopic compositions of used nuclear fuels on neutron cross sections and cumulative fission yields of the JEFF-3.1.1 library by using integral data assimilation, EPJ Nucl. Sci. Technol. 5, 24 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- A.L. Nichols, et al., Improving fission-product decay data for reactor applications: part I – decay heat, Eur. Phys. J. A 59, 78 (2023) [CrossRef] [Google Scholar]
- V. Vallet et al., Nuclear data uncertainty quantification for the decay heat of PWR MOX fuels using data assimilation of elementary fission bursts, EPJ Web Conf. 247, 10002 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Kawamoto, G. Chiba, Feasibility study of decay heat uncertainty reduction using nuclear data adjustment method with experimental data, J. Nucl. Sci. Technol. 54, 213 (2016) [Google Scholar]
- J.C. Jaboulay, S. Bourganel, Analysis of MERCI decay heat measurement for PWR UO2 fuel rod, Nucl. Technol. 177, 73 (2012) [CrossRef] [Google Scholar]
- A. Santamarina, et al., The JEFF-3.1.1 Nuclear Data Library, JEFF Report 22 (2009) [Google Scholar]
- F. Schmittroth, et al., ORIGEN2 Calculations of PWR Spent Fuel Decay Heat Compard with Calorimeter Data (Hanford Engineering Development Laboratory, Richland, WA, 1984) [Google Scholar]
- I. Gauld, et al., Validation of SCALE 5 decay heat predictions for LWR spent nuclear fuel, NUREG/CR-6972, ORNL/TM-2008-015, US NRC (2008) [Google Scholar]
- L. San Felice, et al., Experimental validation of the DARWIN2.3 package for fuel cycle applications, Nucl. Technol. 184, 217 (2013) [Google Scholar]
- A. Tsilanizara, et al., DARWIN: an evolution code system for a large range of applications, J. Nucl. Sci. Technol. 37, 845 (2000) [CrossRef] [Google Scholar]
- A. Santamarina, et al., APOLLO2.8: A Validated Code Package for PWR Calculations (Advances in Nuclear Fuel Management IV, Hilton Head Island, South Carolina, USA, 2009) [Google Scholar]
- C. Struzik, High burnup modelling of UO2 and MOX fuel with METEOR/TRANSURANUS 1.5 C, in Portland, USA, ANS Light Water Fuel Performance Meeting (1997) [Google Scholar]
- OECD/NEA, Evaluation Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO), NEA/NSC/R(2015)8 (2016) [Google Scholar]
- A. Tsilanizara, T. Huynh, New feature of DARWIN/PEPIN2 inventory code: Propagation of nuclear data uncertainties to decay heat and nuclide density, Ann. Nucl. Energy 164, 108579 (2021) [CrossRef] [Google Scholar]
- P. Archier, et al., COMAC. Nuclear Data Covariance Matrices Library for Reactor Applications (PHYSOR, Kyoto, Japan, 2014) [Google Scholar]
- N. Terranova, et al., Covariance matrix evaluations for independent mass fission yields, Nucl. Data Sheets 123, 225 (2015) [CrossRef] [Google Scholar]
- K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: GEF model code, Nucl. Data Sheets 131, 107 (2016) [CrossRef] [Google Scholar]
- D. Rochman, et al., A bayesian Monte Carlo method for fission yield covariance information, Ann. Nucl. Energy 95, 125 (2016) [CrossRef] [Google Scholar]
- L. Fiorito, et al., Generation of fission yield covariances to correct discrepancies in the nuclear data libraries, Ann. Nucl. Energy 88, 12 (2016) [CrossRef] [Google Scholar]
- M. Tiphine, V. Vallet, Impact of fission yield covariance matrices on decay heat uncertainty quantification with the DARWIN2 package, in PHYSOR 2022, Pittsburgh, United States, American Nuclear Society (2022) [Google Scholar]
- G. Kessedjian, et al., Covariance analysis of 235U(nth,f) independent and cumulative fission yields: Propositions for JEFF4, EPJ Web Conf. 281, 00022 (2023) [Google Scholar]
- P. Archier, et al., CONRAD Evaluation Code: Development Status and Perspectives (Nuclear Data for Science and Technology, Nice, France, 2007) [Google Scholar]
- NEA/WPEC-33, Assessment of Existing Nuclear Data Adjustment Methodologies, NSC/WPEC/DOC(2010)429 (2010) [Google Scholar]
- G. Palmiotti, M. Salvatores, G. Aliberti, A-priori and A-posteriori covariance data in nuclear cross section adjustments: Issues and challenges, Nucl. Data Sheets 123, 41 (2015) [CrossRef] [Google Scholar]
- E. Brun, et al., TRIPOLI-4(R), CEA, EDF and AREVA Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
- C. Bastian, et al., AGS, A Computer Code for Uncertainty Propagation in Time-of-flight Cross-section Data (PHYSOR, Vancouver, Canada, 2006) [Google Scholar]
- T. Nicol, C. Carmouze, Impact of experimental correlation on transposition method carry out with critical integral experiments (Paris, France, ICNC, 2019) [Google Scholar]
- A. Fowler, S. Dance, J. Waller, On the interaction of observation and prior error correlations in data assimilation, Quat. J. R. Meteorol. Soc. 144, 48 (2018) [CrossRef] [Google Scholar]
- L. Stewart, et al., Data assimilation with correlated observation errors: experiments with a 1-D shallow water model, Tellus A: Dyn. Meteorol. Oceanogr. 65, 19546 (2013) [CrossRef] [Google Scholar]
- A. Shama, et al., Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules, Nucl. Eng. Technol. 53, 2816 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.