Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Euratom Research and Training in 2022: challenges, achievements and future perspectives
Article Number 18
Number of page(s) 15
Section Part 1: Safety research and training of reactor systems
DOI https://doi.org/10.1051/epjn/2022048
Published online 12 April 2023
  1. M. Schyns, R. Adinolfi, N. Camarcat, J. Duspiva, M. Frignani, J.-C. Garnier, J.-M. Hamy, ESNII Vision Paper, 2021 Ed., ISBN 978-2-919313-27-3. [Google Scholar]
  2. Special Issue: EU ESFR-SMART Project, ASME J. of Nuclear Rad. Sci. 8, 1(January 2022). https://asmedigitalcollection.asme.org/nuclearengineering/issue/8/1. [Google Scholar]
  3. S. Mambelli, Analytical and experimental study of chugging boiling instability: The CHUG project, MS thesis, ETH Zurich. July 2018. https://doi.org/10.5281/zenodo.1311464. [Google Scholar]
  4. A. Lecoanet, M. Gradeck, X. Gaus-Liu, T. Cron, B. Fluhrer, F. Payot, C. Journeau, N. Rimbert, Ablation of a solid material by high-temperature liquid jet impingement: An application to corium jet impingement on a sodium fast reactor core-catcher, ASME J. of Nuclear Rad. Sci. 8, 011308 (2022). [CrossRef] [Google Scholar]
  5. N. Krauter, V. Galindo, T. Wondrak, S. Eckert, G. Gerbeth, Eddy current flow meter performance in liquid metal flows inclined to the sensor axis, ASME J. of Nuclear Rad. Sci. 8, 011303 (2022). [CrossRef] [Google Scholar]
  6. A. Ponomarev, K. Mikityuk, L. Zhang, E. Nikitin, E. Fridman, F. Ivarez-Velarde, P. Romojaro Otero, A. Jiménez-Carrascosa, N. García-Herranz, B. Lindley, U. Baker, A. Seubert, R. Henry, Superphénix benchmark Part I: Results of static neutronics, ASME J. of Nuclear Rad. Sci. 8, 011320 (2022). [CrossRef] [Google Scholar]
  7. A. Ponomarev, K. Mikityuk, E. Fridman, V.A. Di Nora, E. Bubelis, M. Schikorr, Superphénix Benchmark Part II: Transient Results, ASME J of Nuclear Rad Sci 8, 011321 (2022). [CrossRef] [Google Scholar]
  8. S. Perez-Martin, M. Anderhuber, L. Laborde, N. Girault, C. Lombardo, L. Ammirabile, K. Mikityuk, S. Mimouni, C. Péniguel, W. Pfrang, Evaluation of sodium boiling models using KNS-37 loss of flow experiments, ASME J. of Nuclear Rad. Sci. 8, 011310 (2022). [CrossRef] [Google Scholar]
  9. A. Rineiski, C. Mériot, M. Marchetti, J. Krepel, C. Coquelet-Pascal, H. Tsige-Tamirat, F. Álvarez-Velarde, E. Girardi, K. Mikityuk, ESFR-SMART core safety measures and their preliminary assessment, ASME J. of Nuclear Rad. Sci. 8, 011322 (2022). [CrossRef] [Google Scholar]
  10. J. Guidez, J. Bodi, K. Mikityuk, E. Girardi, B. Carluec, New reactor safety measures for the European sodium fast reactor – Part I: Conceptual design, ASME J. of Nuclear Rad. Sci. 8, 011311 (2022). [CrossRef] [Google Scholar]
  11. E. Fridman, F. Álvarez Velarde, P. Romojaro Otero, H. Tsige-Tamirat, A. Jiménez Carrascosa, N. García Herranz, F. Bernard, R. Gregg, U. Davies, J. Krepel, B. Lindley, S. Massara, S. Poumerouly, E. Girardi, K. Mikityuk, Neutronic analysis of the European sodium fast reactor: Part II – Burnup results, ASME J. of Nuclear Rad. Sci. 8, 011301 (2022). [CrossRef] [Google Scholar]
  12. J.S. Narváez Arrúa, A. Cammi, S. Lorenzi, Numerical methodology for design and evaluation of natural circulation systems for MSR applications, in submitted to ANS Annual Meeting (Anaheim, US, 12–16 June 2022). [Google Scholar]
  13. A. Di Ronco, S. Lorenzi, F. Giacobbo, A. Cammi, Multiphysics analysis of RANS-based turbulent transport of solid fission products in the Molten Salt Fast Reactor. submitted to Nucl. Eng. Design 391, 111739 (2022). [CrossRef] [Google Scholar]
  14. J. Diet, J. Krepel, S. Nichenko, MSR fuel cycle and thermo-dynamic simulations, in submitted to FR22 (Austria, Vienna, 19–22 April 2022). [Google Scholar]
  15. F. Caruggi, A. Cammi, E. Cervi, A. Di Ronco, S. Lorenzi, Multiphysics modelling of gaseous fission products removal in the molten salt fast reactor, submitted to Ann. Nucl. Energy (2022). [Google Scholar]
  16. B.J. Kaaks, J.W.A. Reus, M. Rohde, J.L. Kloosterman, D. Lathouwers, Numerical study of phase-change phenomena: A conservative linearized enthalpy approach, in 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Brussels, Belgium, 6–11 March 2022). [Google Scholar]
  17. F. Caruggi, A. Cammi, E. Cervi, A. Di Ronco, S. Lorenzi, Modelling and simulation of the gaseous fission product removal in the molten salt fast reactor, in 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 19) (Brussels, Belgium, 6–11 March 2022). [Google Scholar]
  18. S. Nichenko, L. Terttaliisa, J. Kalilainen, MSR simulation with cGEMS: Fission product release and aerosol formation, in Cooperative Severe Accident Research Program (CSARP) (7–11 June, 2021). [Google Scholar]
  19. A. Di Ronco, S. Lorenzi, F. Giacobbo, A. Cammi, An Eulerian single-phase transport model for solid fission products in the molten salt fast reactor: development of an analytical solution for verification purposes, Front. Energy Res. 9, (29 June 2021). Sec. Nuclear Energy, https://doi.org/10.3389/fenrg.2021.692627. [CrossRef] [Google Scholar]
  20. G. Merla, A. Cammi, S. Lorenzi, A new reactivity control approach for circulating fuel reactors, in NENE 2021 (Slovenia, Bled, 6–9 September 2021). [Google Scholar]
  21. M. Santanocetoa, M. Tiberga, Z. Perkó, S. Dulla, D. Lathouwers, Preliminary uncertainty and sensitivity analysis of the Molten Salt Fast Reactor steady-state using a Polynomial Chaos Expansion method, Ann. Nucl. Energy 159, 108311 (2021). [CrossRef] [Google Scholar]
  22. T. Schulenberg, I. Otic, Suggestion for design of a Small Modular SCWR, in Proceedings of the 10th International Symposium on SCWRs (ISSCWR-10) (Prague, the Czech Republic, March 15–19, 2021) p. 17. [Google Scholar]
  23. Y. Dubyk, V. Filonov, O. Kovalenko, Y. Filonova, Deteriorated heat transfer influence on the stress-strain state of SMR SCWR fuel bundles, ASME J of Nuclear Rad. Sci. 8, 031105 (2022). [CrossRef] [Google Scholar]
  24. A. Pucciarelli, S. Kassem, W. Ambrosini, Overview of a theory for planning similar experiments with different fluids at supercritical pressure, Energies, MDPI 14, 1–22 (June 2021). https://doi.org/10.3390/en14123695. [Google Scholar]
  25. IAEA, Ageing management of concrete structures in NPP (IAEA, Nuclear Energy Series, NP-T-3.5, 2016) p. 372. [Google Scholar]
  26. IAEA, Ageing Management for NPP (IAEA, Safety Guide, NS-G-2.12, 2009) p. 65. [Google Scholar]
  27. U.S.NRC, Expanded materials degradation assessment (EMDA) – Volume 4: Ageing of concrete and civil structures. USNRC, NUREG-CR-7153, Vol. 4, ORNL/TM-2013/532, 2014, p. 135. [Google Scholar]
  28. IAEA, Ageing Management and Development of a Programme for LTO of NPP (IAEA, Safety Guide, SSG-48, 2018) p. 64. [Google Scholar]
  29. IAEA, Periodic Safety Review for Nuclear Power Plants (IAEA, Safety Standards Series, SSG-25) 2013. [Google Scholar]
  30. ACES H2020 Project, Towards improved assessment of safety performance for LTO of nuclear civil engineering structures, Description of Action (ACES Project, 2020), p.70. [Google Scholar]
  31. D. Jacques, L. Yu, M. Ferreira, T. Oey, Overview of state-of-the-art knowledge for the quantitative assessment of the ageing/deterioration of concrete in nuclear power plant systems, structures, and components, ACES Project Deliverable D1.1, 2021.09.27, p.217. [Google Scholar]
  32. C. Poette, ALLEGRO preliminary viability Report, CEA/DEN/CAD/DER/SESI/LCSI NT-DO12, December 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.