Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjn/2022017 | |
Published online | 14 October 2022 |
- J. Rogelj, D. Shindell, S.F.K. Jiang, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, M. Vilariño, Mitigation pathways compatible with 1.5 °C in the context of sustainable development, Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (2018) [Google Scholar]
- S.H. Kim, K. Wada, A. Kurosawa, M. Roberts, Nuclear energy response in the EMF27 study, Clim. Change 123, 443 (2014) [CrossRef] [Google Scholar]
- J. Rogelj, A. Popp, K.V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, T. Hasegawa, G. Marangoni, V. Krey, E. Kriegler, K. Riahi, D.P. van Vuuren, J. Doelman, L. Drouet, J. Edmonds, O. Fricko, M. Harmsen, P. Havlík, F. Humpenöder, E. Stehfest, M. Tavoni, Scenarios towards limiting global mean temperature increase below 1.5 °C, Nat. Clim. Change 8, 325 (2018) [CrossRef] [Google Scholar]
- F. Creutzig, P. Agoston, J.C. Goldschmidt, G. Luderer, G. Nemet, R.C. Pietzcker, The underestimated potential of solar energy to mitigate climate change, Nat. Energy 2, 17140 (2017) [CrossRef] [Google Scholar]
- M.Z. Jacobson, M.A. Delucchi, Z.A. Bauer, S.C. Goodman, W.E. Chapman, M.A. Cameron, C. Bozonnat, L. Chobadi, H.A. Clonts, P. Enevoldsen, J.R. Erwin, S.N. Fobi, O.K. Goldstrom, E.M. Hennessy, J. Liu, J. Lo, C.B. Meyer, S.B. Morris, K.R. Moy, P.L. O’Neill, I. Petkov, S. Redfern, R. Schucker, M.A. Sontag, J. Wang, E. Weiner, A.S. Yachanin, 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world, Joule 1, 108 (2017) [CrossRef] [Google Scholar]
- C. Clack, S. Qvist, J. Apt, M. Bazilian, A. Brandt, K. Caldeira, S. Davis, V. Diakov, M. Handschy, P. Hines, P. Jaramillo, D. Kammen, J. Long, M. Morgan, A. Reed, V. Sivaram, J. Sweeney, G. Tynan, D. Victor, J. Weyant, J. Whitacre, Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar, Proc. Natl. Acad. Sci. 114, 6722 (2017) [CrossRef] [Google Scholar]
- S. Hong, C.J. Bradshaw, B.W. Brook, Global zero-carbon energy pathways using viable mixes of nuclear and renewables, Appl. Energy 143, 451 (2015) [CrossRef] [Google Scholar]
- A. Berger, T. Blees, F.M. Breon, B.W. Brook, M. Deffrennes, B. Durand, P. Hansen, E. Huffer, R.B. Grover, C. Guet, W. Liu, F. Livet, H. Nifenecker, M. Petit, G. Pierre, H. Prévot, S. Richet, H. Safa, M. Salvatores, M. Schneeberger, B. Wornan, S. Zhou, Nuclear energy and bio energy carbon capture and storage, keys for obtaining 1.5 °C mean surface temperature limit, Int. J. Glob. Energy Issues 40, 240 (2017) [CrossRef] [Google Scholar]
- A. Berger, T. Blees, F.M. Bréon, B.W. Brook, P. Hansen, R.B. Grover, C. Guet, W. Liu, F. Livet, H. Nifenecker, M. Petit, G. Pierre, H. Prévot, S. Richet, H. Safa, M. Salvatores, M. Schneeberger, S. Zhou, How much can nuclear energy do about global warming? Int. J. Glob. Energy Issues 40, 43 (2017) [CrossRef] [Google Scholar]
- X.-J. Xiao, K.-J. Jiang, China’s nuclear power under the global 1.5 °C target: Preliminary feasibility study and prospects, Adv. Clim. Change Res. 9, 138 (2018) [CrossRef] [Google Scholar]
- B.K. Sovacool, P. Schmid, A. Stirling, G. Walter, G. MacKerron, Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power, Nat. Energy 5, 928 (2020) [CrossRef] [Google Scholar]
- H. Fell, A. Gilbert, J. Jenkins, M. Mildenberger, Reply to ‘Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power’, by Sovacool et al. (2020), SSRN Electron. J. (2021) https://ssrn.com/abstract=3762762 or http://dx.doi.org/10.2139/ssrn.3762762 [Google Scholar]
- F. Wagner, CO2 emissions of nuclear power and renewable energies: A statistical analysis of european and global data, Eur. Phys. J. Plus 136, 562 (2021) [CrossRef] [Google Scholar]
- Conditions and Requirements for the Technical Feasibility of a Power System with a High Share of Renewables in France Towards 2050, Technical report (IEA, Paris, 2021) [Google Scholar]
- BP Statistical Review of World Energy, Technical report (BP, London 2019) [Google Scholar]
- P. Bloomfield, Fourier Analysis of Time Series: An Introduction (Wiley, New York, 1976) [Google Scholar]
- R.H. Shumway, Applied Statistical Time Series Analysis (Prentice Hall, Englewood Cliffs, NJ, 1988) [Google Scholar]
- J. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994) [CrossRef] [Google Scholar]
- I. Pardoe, Multiple Linear Regression (John Wiley & Sons Ltd, Hoboken, NJ, 2012) [Google Scholar]
- S. Da Veiga, F. Gamboa, B. Iooss, P. Clémentine, Basics and trends in sensitivity analysis theory and practice in R (SIAM, 2021) [Google Scholar]
- U. Grömping, Relative importance for linear regression in R: The package relaimpo, J. Stat. Softw. 17, 1 (2006) [CrossRef] [Google Scholar]
- U. Grömping, Estimators of relative importance in linear regression based on variance decomposition, Am. Stat. 61, 139 (2007) [CrossRef] [Google Scholar]
- J.W. Johnson, J.M. Lebreton, History and use of relative importance indices in organizational research, Organ. Res. Meth. 7, 238 (2004) [CrossRef] [Google Scholar]
- Data and Statistics, Technical report (IEA, Paris 2020) [Google Scholar]
- R. Christensen, Comment on Chevan and Sutherland, Am. Stat. 46, 70 (1992) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.