Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 7, 2021
Article Number 16
Number of page(s) 6
DOI https://doi.org/10.1051/epjn/2021015
Published online 23 September 2021
  1. V. Lamirand, A. Laureau, O. Pakari, P. Frajtag, A. Pautz, Power calibration methodology at the CROCUS reactor, EPJ Web Conf. 225, 04022 (2020) [CrossRef] [Google Scholar]
  2. D. Fourmentel, J.-F. Villard, A. Lyoussi, C. Reynard-Carette, G. Bignan, J.-P. Chauvin, C. Gonnier, P. Guimbal, J.-Y. Malo, M. Carette et al., Combined analysis of neutron and photon flux measurements for the Jules Horowitz Reactor core mapping, in 2011 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (IEEE, 2011) [Google Scholar]
  3. H. Amharrak, J.D. Salvo, A. Lyoussi, M. Carette, C. Reynard-Carette, State of the art on nuclear heating in a mixed (n/γ) field in research reactors, Nucl. Instr. Methods Phys. Res. A 749, 57–67 (2014) [CrossRef] [Google Scholar]
  4. G. Rimpault, D. Bernard, D. Blanchet, C. Vaglio-Gaudard, S. Ravaux, A. Santamarina, Needs of accurate prompt and delayed γ-spectrum and multiplicity for nuclear reactor designs, Phys. Proc. 31, 3–12 (2012) [CrossRef] [Google Scholar]
  5. J. Leppönen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo Code: Status, Development and Applications in 2013, in SNA MC 2013 – Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, edited by D. Caruge, C. Calvin, C. Diop, F. Malvagi, J.C. Trama (EDP Sciences, 2014) [Google Scholar]
  6. J. Leppänen, T. Kaltiaisenaho, V. Valtavirta, M. Metsälä, Development of a coupled neutron / photon transport mode in the serpent 2 Monte Carlo code, in International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C 2017 (2017) [Google Scholar]
  7. R. Tuominen, V. Valtavirta, J. Leppänen, New energy deposition treatment in the serpent 2 monte carlo transport code, Ann. Nucl. Energy 129, 224–232 (2019) [CrossRef] [Google Scholar]
  8. S. Ravaux, D. Bernard, A. Santamarina, New evaluation of photon production for JEFF-3, EPJ Web Conf. 42, 04002 (2013) [CrossRef] [Google Scholar]
  9. S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipré, F.-J. Hambsch, M. Lebois, A. Oberstedt, P. Marini, M. Vidali et al., Prompt fission γ-ray spectra characteristics - a first summary, Phys. Proc. 64, 83–90 (2015) [CrossRef] [Google Scholar]
  10. K. Ambrožič, D. Fourmentel, H. Carcreff, V. Radulović, L. Snoj, Computational support on the development of nuclear heating calorimeter detector design, EPJ Web Conf. 225, 04033 (2020) [CrossRef] [Google Scholar]
  11. K. Ambrožič, L. Snoj, Characterization of gamma field in the JSI TRIGA reactor, Ph.D. thesis, University of Ljubljana, Faculty of Mathematics and Physics (2020) [Google Scholar]
  12. D. Blanchet, N. Huot, P. Sireta, H. Serviere, M. Boyard, M. Antony, V. Laval, P. Henrard, Qualification of a gamma-ray heating calculation scheme for the future jules horowitz material testing reactor (RJH), Ann. Nucl. Energy 35, 731–745 (2008) [CrossRef] [Google Scholar]
  13. D. Fourmentel, C. Reynard-Carette, A. Lyoussi, J.F. Villard, J.Y. Malo, M. Carette, J. Brun, P. Guimbal, Y. Zerega, Nuclear heating measurements in material testing reactor: a comparison between a differential calorimeter and a gamma thermometer, IEEE Trans. Nucl. Sci. 60, 328–335 (2013) [Google Scholar]
  14. D. Fourmentel, P. Filliatre, J.-F. Villard, A. Lyoussi, C. Reynard-Carette, H. Carcreff, Measurement of photon flux with a miniature gas ionization chamber in a material testing reactor, Nucl. Instr. Methods Phys. Res. Sect. A 724, 76–82 (2013) [CrossRef] [Google Scholar]
  15. D. Fourmentel, V. Radulovic, L. Barbot, J-F. Villard, G. Zerovnik, L. Snoj, M. Tarchalski, K. Pytel, F. Malouch, Delayed gamma measurements in different nuclear research reactors bringing out the importance of the delayed contribution in gamma flux calculations, in 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA) (IEEE, 2015) [Google Scholar]
  16. O.V. Pakari, Experimental and numerical study of stochastic branching noise in nuclear reactors, Ph.D. thesis, École polytechnique fédérale de Lausanne (EPFL, 2020) [Google Scholar]
  17. K. Ambrožič, A. Gruel, V. Radulović, M.L. Guillou, P. Blaise, C. Destouches, L. Snoj, Delayed gamma determination at the JSI TRIGA reactor by synchronous measurements with fission and ionization chambers, Nucl. Instr. Methods Phys. Res. A 911, 94–103 (2018) [CrossRef] [Google Scholar]
  18. U. Kasemeyer, R. Früh, J.M. Paratte, R. Chawla, Benchmark on kinetic parameters in the CROCUS reactor, in International Reactor Physics Experiments Handbook (IRPhE), no. 4440, OECD (2007) [Google Scholar]
  19. J.M. Paratte, R. Früh, U. Kasemeyer, M.A. Kalugin, W. Timm, R. Chawla, A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor, Ann. Nucl. Energy 33, 739–748 (2006) [CrossRef] [Google Scholar]
  20. O. Pakari, V. Lamirand, G. Perret, L. Braun, P. Frajtag, A. Pautz, Current Mode Neutron Noise Measurements in the Zero Power Reactor CROCUS, in EPJ Web of Conferences (EDP Sciences, 2018), Vol. 170, p. 04017 [Google Scholar]
  21. O. Pakari, V. Lamirand, G. Perret, P. Frajtag, A. Pautz, Kinetic parameter measurements in the crocus reactor using current mode instrumentation, IEEE Trans. Nucl. Sci. (2018) [Google Scholar]
  22. F. Vitullo, V. Lamirand, J.-B. Mosset, P. Frajtag, O. Pakari, G. Perret, A. Pautz, A mm3 fiber-coupled scintillator for in-core thermal neutron detection in CROCUS, IEEE Trans. Nucl. Sci. 67, 625–635 (2020) [CrossRef] [Google Scholar]
  23. F. Vitullo, V. Lamirand, J.-B. Mosset, P. Frajtag, O. Pakari, P. Gregory, A. Pautz, Developing and testing a miniature fiber-coupled scintillator for in-core neutron counting in CROCUS, EPJ Web Conf. 225, 04018 (2020) [CrossRef] [Google Scholar]
  24. M. Hursin, C. Weiss, P. Frajtag, V. Lamirand, G. Perret, P. Kavrigin, A. Pautz, E. Griesmayer, Testing of a sCVD diamond detection system in the CROCUS reactor, Eur. Phys. J. A 54 (2018) [CrossRef] [Google Scholar]
  25. O. Pakari, V. Lamirand, T. Mager, A. Laureau, P. Frajtag, A. Pautz, First in-core gamma spectroscopy experiments in the zero power reactor crocus, in ANIMMA 2021 Conference Proceedings (2021) [Google Scholar]
  26. G. Perret, Tm-41-14-02 rev. 1: Decay constant and delayed neutron fraction measurements in crocus, Tech. rep., ERP, LRS, Paul Scherrer Institut (2014) [Google Scholar]
  27. O.V. Pakari, Development of current and fast neutron noise measurements in CROCUS, Master’s thesis, École polytechnique fédérale de Lausanne (EPFL, 2016), http://infoscience.epfl.ch/record/253177 [Google Scholar]
  28. V. Lamirand, G. De Izarra, A. Krása, G. Perret, O. Pakari, P. Frajtag, M. Hursin, P. Blaise, J. Wagemans, A. Pautz, Intercomparison of neutron noise measurement systems in the CROCUS reactor, in Proc. PHYSOR (2018) [Google Scholar]
  29. Ortec 926 MCB, Datasheet (2019), www.ortec-online.com/download/926-MNL.pdf [Google Scholar]
  30. G. Perret, B. Geslot, A. Gruel, P. Blaise, J. Di-Salvo, G. De Izarra, C. Jammes, M. Hursin, A. Pautz, Kinetic parameter measurements in the minerve reactor, IEEE Trans. Nucl. Sci. 64, 72–734 (2017) [CrossRef] [Google Scholar]
  31. V. Lamirand, Installation nucléaire CROCUS - rapport de sécurité, Tech. rep., LRS Internal Report No 15-48 (2016) [Google Scholar]
  32. D.E. Alburger, G.A.P. Engelbertink, Half-lives ofBe11, c15, n16, o19, andAl28, Phys. Rev. C 2, 1594–1596 (1970) [CrossRef] [Google Scholar]
  33. O. Pakari, V. Lamirand, G. Perret, D. Godat, M. Hursin, P. Frajtag, A. Pautz, Investigation of spatial effects on neutron noise measurements in the zero power reactor CROCUS, in PHYSOR, Cancun, Mexico (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.