Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 7, 2021
Article Number 3
Number of page(s) 14
DOI https://doi.org/10.1051/epjn/2021002
Published online 05 February 2021
  1. ASN, Qualification of scientific computing tools used in the nuclear safety case − 1st barrier, guide n°28, version of 25/07/2017. http://www.french-nuclear-safety.fr/References/ASN-Guides-non-binding/ASN-Guide-No.-28 [Google Scholar]
  2. V. Larget, How to bring conservatism to a BEPU analysis, NURETH-18, Portland, OR, August 18–22, 2019 [Google Scholar]
  3. D. Bestion, Specific requirements for bepu methods using system thermal hydraulic codes with 3d-pressure vessel modelling, ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018) BEPU2018-194 Real Collegio, Lucca, Italy, May 13–19, 2018 [Google Scholar]
  4. BEMUSE Phase VI Report, Status Report on the Area, Classification of the Methods, Conclusions and Recommendations, NEA/CSNI/R (2011) 4, Organization for Economic Co-operation and Development/Nuclear Energy Agency (2011) [Google Scholar]
  5. T. Skorek, A. De Crécy, PREMIUM—Benchmark on the Quantification of the Uncertainty of the Physical Models in the System Thermal-Hydraulic Codes, OECD/NEA/CSNI/R(2013)8, Proc. CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations, Barcelona, Spain, November 16–18 (2013) [Google Scholar]
  6. R. Mendizabal et al., PREMIUM Phase V Report: Final Report, OECD/NEA/CSNI/R(2016)18, Organisation for Economic Co-operation and Development/Nuclear Energy Agency (2017) [Google Scholar]
  7. H. Kamide, H. Ohshima, T. Sakai, M. Tanaka, Progress of thermal hydraulic evaluation methods and experimental sodium-cooled fast reactor and its safety in Japan, Nucl. Eng. Des. 312, 30–41 (2017) [Google Scholar]
  8. R. Nakai, T. Sofu, Safety design criteria for Generation-VI Sodium-cooled Fast Reactor system, GIF Symposium, San Diego, USA, 14–15 November, 2012 [Google Scholar]
  9. GIF Risk & Safety Working Group, Basis for Safety Approach for Design & Assessment of Generation-IV Nuclear Systems, GIF/RSWG/2007/002, 2008 [Google Scholar]
  10. R. Nakai, Status of the international review on SFR SDC Phase I report and SDG development in Phase II, 5th Joint IAEA -GIF Workshop on Safety of SFR, Vienna, 23–24 June, 2015 [Google Scholar]
  11. Y. Okano, SFR Specific Criteria, 3rd Joint GIF-IAEA Workshop on Safety Design Criteria for Sodium-Cooled Fast Reactors, IAEA Vienna, Austria, 2013 [Google Scholar]
  12. S.J. Ball, S.E. Fisher, S. Basu, Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report, NUREG/CR6944 Vol. 1, ORNL/TM-2007/147, Vol. 1, 2008 [Google Scholar]
  13. S. Li, A. Gerschenfeld, O. Bernard, T. Sageaux, Onset of natural convection in a sodium-cooled fast reactor during a station black-out: blind benchmark of safety assessment using multi-scale coupled thermal-hydraulics codes, Proceedings of the 18th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH 18), 18–23 August, Portland, USA, 2019 [Google Scholar]
  14. F. Gauche, The French Prototype of 4th Generation Reactor: ASTRID, Annual meeting on nuclear technology, Berlin, Germany, May 17 & 18th (2011) [Google Scholar]
  15. F. Serre, F. Bertrand, C. Journeau, C. Suteau, D. Verwaerde, D. Schmitt, B. Farges, Status of the French R&D program on the Severe Accident Issue to Develop GENIV SFRs, ICAPP 2015, Nice, France, May 3–6, 2015 [Google Scholar]
  16. A. Gerschenfeld, Multiscale and multiphysics simulation of sodium fast reactors: from model development to safety demonstration, NURETH 18, August 18–23, 2019, Portland, USA [Google Scholar]
  17. T. Beck et al., Conceptual design of ASTRID fuel sub-assemblies, Nucl. Eng. Des. 315, 51–60 (2017) [Google Scholar]
  18. T. Beck et al., Conceptual design of ASTRID radial shielding sub-assemblies, Nucl. Eng. Des. 330, 129–137 (2018) [Google Scholar]
  19. M. Saez et al., Passive Complementary Safety Devices for ASTRID severe accident prevention, International Conference on Fast Reactors and Related Fuel Cycles, Yekaterinburg, Russia (2017) [Google Scholar]
  20. W. Marth, The European Fast Reactor (EFR) − a project of the European fast reactor cooperation, SVA-Bull. CODEN SVABB 32, 29–36 (1990) [Google Scholar]
  21. G. Gaillard-Groleas et al, Improvements in simulation tools to be developed within the framework of the ASTRID project, ICAPP 2016 San Francisco, CA, USA, April 17–20, 2016 [Google Scholar]
  22. A. Gerschenfeld et al., Development and validation of multiscale thermal hydraulics calculation schemes for SFR application at CEA, International Conference on Fast Reactors and Related Fuel Cycles, Yekaterinburg, Russia (2017) [Google Scholar]
  23. C. Geffray et al., Results of the PHENIX dissymmetric test benchmark exercise, Proc. International Congress on Advances in Nuclear Power Plants (ICAPP 2019), 2019 [Google Scholar]
  24. D. Pialla et al., Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project, Nucl. Eng. Des. 290 (2015) [Google Scholar]
  25. D. Grishchenko et al., The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes, Nucl. Eng. Des. 290, 144 (2015) [Google Scholar]
  26. A. Pesetti et al., Experimental characterization of CIRCE-HERO facility heat losses, SESAME International Workshop, 2019 [Google Scholar]
  27. K.V. Tichelen, F. Mirelli, Thermal hydraulic experiments in the LBE-cooled scaled pool facility E-SCAPE, SESAME International Workshop, 2019 [Google Scholar]
  28. J. Pacio et al., Inter-wrapper flow: LBE experiments and simulations, NURETH18, 2019 [Google Scholar]
  29. H. Kamide, K. Hayashi, T. Isozaki, M. Nishimura, Investigation of core thermohydraulics in fast reactors—interwrapper flow during natural circulation, Nucl. Technol. 133, 77 (2001) [Google Scholar]
  30. T. Ezure et al., Study on multi-dimensional core cooling behavior of sodium-cooled fast reactors under DRACS operating conditions, NURETH18 (paper 28311), 2019 [Google Scholar]
  31. Y. Wu, CLEAR-S: an integrated non-nuclear test facility for China lead-based research reactor, Int. J. Energy Res. 40, 1951 (2016) [Google Scholar]
  32. Benchmark Analysis of EBR-II Shutdown Heat Removal Tests, IAEA, Vienna, 2017 [Google Scholar]
  33. Benchmark Analysis of FFTF Loss of Flow Without Scram Test, Coordinated Research Project number I32011, AIEA, 2018 [Google Scholar]
  34. R.B. D'Auria, Scaling of the accuracy of the Relap5/mod2 code, Nucl. Eng. Des. 139, 187–203 (1993) [Google Scholar]
  35. A. De Crecy, CIRCE: a tool for calculating the uncertainty of the constitutive relationships of CATHARE 2, Proc. 8th Intl Topical Meeting on Nuclear Reactor Thermal-Hydaulics, NURETH-8, 1997 [Google Scholar]
  36. N. Marie, A. Marrel, K. Herbreteau, Statistical methodology for a quantified validation of sodium fast reactor simulation tools, J. Verif. Valid. Uncert. (2019). https://doi.org/10.1115/1.4045233 [Google Scholar]
  37. G. Rimpault et al., The ERANOS Code and Data System for Fast Reactor Neutronic Analyses, PHYSOR 2002, Seoul, Korea, 2002 [Google Scholar]
  38. M. Lainet, B. Michel, J-C. Dumas, K. Samuelsson, M. Pelletier, Current status and progression of GERMINAL fuel performance code for SFR oxide fuel pins, International Conference on Fast Reactors and Related Fuel Cycles, Yekaterinburg, Russia (2017) [Google Scholar]
  39. V.M. Borishanskii, E.V. Firsova, Heat exchange in separated bundles of rods with metallic sodium flowing longitudinally, Sov. At. Energy 16, 457–458 (1964) [Google Scholar]
  40. E. Skupinski, J. Tortel, L. Vautrey, Détermination des coefficients de convection d'un alliage sodium potassium dans un tube circulaire, Int. J. Heat Mass Transf. 8, 937–95 (1964) [Google Scholar]
  41. R.A. Seban, T.T. Shimazaki, Heat transfer to a fluid flowing turbulently in a smooth pipe with walls at constant temperature, Trans. ASME 73, 803–809 (1951) [Google Scholar]
  42. A. Meynaoui, A. Marrel, B. Laurent, New statistical methodology for second level global sensitivity analysis, ASA J. Uncertain. (2019). arXiv:1902.07030 [Google Scholar]
  43. J. Loeppky, J. Sacks, W. Welch, Choosing the sample size of a computer experiment: A practical guide, Technometrics 51, 366–376 (2009) [Google Scholar]
  44. K.-T. Fang, R. Li, A. Sudjianto, Design and modeling for computer experiments, Chapman and Hall/CRC; 1st edition (October 14, 2005), Boca Raton, Florida [Google Scholar]
  45. C. Cannamela, J. Garnier, B. Iooss, Controlled stratification for quantile estimation. Ann. Appl. Stat. 2, 1554–1580 (2008) [Google Scholar]
  46. E. Zio, F. Di Maio, S. Martorell, Y. Nebot, Neural network and order statistics for quantifying nuclear power plant safety margins, in: S. Martorell, C.G. Soares, J. Barnett (Eds.), Safety, reliability and risk analysis − Proceedings of the ESREL 2008 Conference, CRC Press 2009, pp. 2873–2881 [Google Scholar]
  47. S. Nanty, C. Helbert, A. Marrel, N. Pérot, C. Prieur, Uncertainty quantification for functional dependent random variables, Comput. Stat. 32, 559–583 (2017) [Google Scholar]
  48. S. Da Veiga, Global sensitivity analysis with dependence measures, J. Stat. Comput. Simul. 85, 1283–1305 (2015) [Google Scholar]
  49. M. De Lozzo, A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, J. Stat. Comput. Simul. 86, 3038–3058 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.