Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 7, 2021
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/epjn/2020020 | |
Published online | 21 January 2021 |
- IEA/NEA (2015) Technology Roadmap: Nuclear Energy. Paris. https://www.oecd-nea.org/pub/techroadmap/techroadmap-2015.pdf [Google Scholar]
- UNFCCC Secretariat, Aggregate effect of the intended nationally determined contributions: an update (2016), https://doi.org/10.1093/iclqaj/24.3.577 [Google Scholar]
- IAEA (2018) Advances in Small Modular Reactor Technology Developments 2018 Edition. https://aris.iaea.org/Publications/SMR-Book_2018.pdf [Google Scholar]
- B. Petrovic, The integral inherently safe light water reactor, Nucl. Eng. Int. (2014), http://www.neimagazine.com/features/featurethe-integral-inherently-safe-light-water-reactor-4253617/ [Google Scholar]
- B. Petrovic, F. Rahnema, C. Deo, S. Garimella, P. Singh, K. Oh, C. Yi, D. Zhang, A. Manera, J. Lee, T. Downar, A. Ward, P. Ferroni, F. Franceschini, D. Salazar, B. Upadhyaya, M. Lish, I. Charit, A. Haghighat, M. Memmott, G. Boy, A. Ougouag, G. Parks, D. Kotlyar, M. Ricotti, Č. Nikola, D. Grgi, D. Pevec, M. Matijevi, N. Irvin, I2S-LWR concept update, in Proceedings of The 20th Pacific Basin Nuclear Conference , edited by H. Jiang (China Nuclear Power Engineering Co, Ltd, Beijing), (Springer, Singapore, 2016), pp. 153– 167 [Google Scholar]
- M.S. Ali, Evolution of the leak-before- break concept in nuclear plants: issues and resolutions in the process of regulatory actions, Nucl. Technol. 176, 442–451 (2011) [Google Scholar]
- R. Bourga, P. Moore, Y.-J. Janin, B. Wang, J. Sharples, Leak-before-break: global perspectives and procedures, Int. J. Press. Vessel. Pip. 129, 43–49 (2015) [CrossRef] [Google Scholar]
- P. Scott, R.J. Olson, G.M. Wilkowski, NUREG/CR-6765 Development of Technical Basis for Leak-Before-Break Evaluation Procedures (2002), Office of Nuclear Regulatory Research, USNRC, Washington DC, 20555-0001, https://www.nrc.gov/docs/ML0217/ML021720594.pdf [Google Scholar]
- T. Deighton, Liquid Moderated Nuclear Reactor. US 3,356,583 (1967) [Google Scholar]
- H. Neumann, Vom Forschungsreaktor zum ≫ Atomschiff ≪ OTTO HAHN, 1st edn. ed. (Verlag H.M. Hauschild, Bremen, Germany, 2009) [Google Scholar]
- J. Reinartz, Historie Als die Kernenergie “Ahoi” rief. NS Otto Hahn: Nuklearbetriebenes Forschungs-und Frachtschiff. atw Int. J. Nucl. Power 58, 652–656 (2013) [Google Scholar]
- IAEA, Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, IAEA Nuclear Energy Series No. NP-T-3.13 (Vienna, 2011) [Google Scholar]
- D.C. Groeneveld, L.K.H. Leung, P.L. Kirillov, V.P. Bobkov, I.P. Smogalev, V.N. Vinogradov, X.C. Huang, E. Royer, The 1995 look-up table for critical heat flux in tubes, Nucl. Eng. Des. 163, 1–23 (1996) [CrossRef] [Google Scholar]
- B. Majborn, K. Brodersen, CF. Højerup, F. Heikel Vinther, editors, Risø National Laboratory Nuclear Safety Research Department Annual Progress Report 1992, Risø-R-679(EN) §3. 2. 6, p. 18, 1993 [Google Scholar]
- K. Hannerz, L. Nillson, T. Pedersen, C. Pind, The PIUS pressurized water reactor: aspects of plant operation and availability, Nucl. Technol. 91, 81–88 (1990) [CrossRef] [Google Scholar]
- J.M. Taylor, SECY-93-092-Issues pertaining to the advanced reactor (PRISM, MHTGR, and PIUS) and CANDU 3 designs and their relationship to current regulatory requirements (1993), https://www.nrc.gov/docs/ML0402/ML040210725.pdf [Google Scholar]
- F.W. Kleimola, Passive containment system for a nuclear reactor. US 3,984,282 (1976) [Google Scholar]
- N.M. Bonhomme, Containment for a water cooled and moderated nuclear reactor. US 9,502,142 (2016) [Google Scholar]
- G. Cénérino, Accidents graves des réacteurs à eau de production d'électricité, Rapport IRSN-2008/98-FR (2008) [Google Scholar]
- IAEA, Severe Accident Management Programmes for Nuclear Power Plants. Safety Guide No. NS-G-2.15, Safety Guide No. NS-G-2.15 (2009), https://www-pub.iaea.org/MTCD/publications/PDF/Pub1376_web.pdf [Google Scholar]
- USNRC, Standard review plan 19.0, NUREG-0800 (2015) [Google Scholar]
- H. Esmaili, M. Khatib-Rahbar, NUREG/CR-6849, ERI/NRC 046201. Analysis of In-Vessel Retention and Ex-Vessel Fuel Coolant Interaction for AP1000 (2004), https://www.nrc.gov/docs/ML0424/ML042460184.pdf [Google Scholar]
- IRSN, Eléménts de réfléxion sur la stratégié de réténtion d'un corium en cuve de réactéur (2015), https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/Documents/IRSN_Reflexion-Strategie-Retention-Corium-Cuve_V2-07-2015.pdf [Google Scholar]
- T.G. Theofanous, C. Liu, S. Additon, S. Angelini, O. Kymäläinen, T. Salmassi, In-vessel coolability and retention of a core melt, DOE/ID-10460, VOLUME 1 (October 1996), https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/006/29006120.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.