Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 56
Number of page(s) 17
DOI https://doi.org/10.1051/epjn/2020018
Published online 28 October 2020
  1. U.S. Rohatgi, Historical perspectives of BEPU research in US, ANS Best Estimate Plus Uncertainty International Conference (BEPU), Lucca, 201 [Google Scholar]
  2. M.C. Kennedy, A. O’Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika 87, 1 (2000) [CrossRef] [Google Scholar]
  3. M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63, 425 (2001) [CrossRef] [MathSciNet] [Google Scholar]
  4. G.N. Absi, S. Mahadevan, Multi-fidelity approach to dynamics model calibration, Mech. Syst. Sig. Process. 68-69, 189 (2016) [CrossRef] [Google Scholar]
  5. J. Goh, et al., Prediction and computer model calibration using outputs from multifidelity simulators, Technometrics 55, 501 (2013) [CrossRef] [Google Scholar]
  6. S. Sarkar, et al., Multifidelity and multiscale Bayesian framework for high-dimensional engineering design and calibration, J. Mech. Des. 141, 121001 (2019) [CrossRef] [Google Scholar]
  7. B. Peherstorfer, K., Willcox, M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev. 60, 550 (2018) [CrossRef] [Google Scholar]
  8. R. Mendizábal, E. de Alfonso, J. Freixa, F. Reventós, Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark, OECD/NEA/CSNI/R(2016)18 [Google Scholar]
  9. J. Baccou, et al., Development of good practice guidance for quantification of thermal-hydraulic code model input uncertainty, Nucl. Eng. Des 354, 110173 (2019) [CrossRef] [Google Scholar]
  10. V.E.A. Marelle, New developments in ALCYONE 2.0 fuel performance code, TOP FUEL ANS, 2016 [Google Scholar]
  11. J.-C. Le Pallec, K. Mer-Nkonga, Neutronics/Fuel Thermomechanics coupling in the framework of a REA (Rod Ejection Accident) Transient Scenario Calculation, PHYSOR 2016 Conference: Unifying Theory and Experiments in the 21st Century, Sun Valley, Idaho, USA, May 1–5, 2016 [Google Scholar]
  12. D. Schneider et al., APOLLO3®: CEA/DEN deterministic multi-purpose code for reactor physics analysis, PHYSOR 2016, Sun Valley, Idaho, USA, May 1–5, 2016 [Google Scholar]
  13. I. Toumi et al., FLICA4: a three dimensional two-phase flow computer code with advanced numerical methods for nuclear applications, Nucl. Eng. Des. 200, 139 (2000) [CrossRef] [Google Scholar]
  14. K. Ivanov, M. Avramova, S. Kamerow, I. Kodeli, E. Sartori, E. Ivanov, O. Cabellos, Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs, Volume I: Specification and Support Data for Neutronics Cases (Phase I), NEA/NSC/DOC(2013)7 [Google Scholar]
  15. A. Toptan, A novel approach to improve transient fuel performance modeling in multi-physics calculations, Thesis, North Carolina State University, 2019 [Google Scholar]
  16. A. Targa, Development of multi-physics and multi-scale best effort modelling of pressurized water reactor under accidental situations, Thesis, Université Paris-Saclay, 2017 [Google Scholar]
  17. G.-K. Delipei, J. Garnier, J-C. Le Pallec, B. Normand, Uncertainty analysis methodology formulti-physics coupled rod ejection accident, ANS International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), Portland, 2019. https://hal.archives-ouvertes.fr/hal-02907458 [Google Scholar]
  18. G.-K. Delipei, J. Garnier, J-C. Le Pallec, B. Normand, Multi-physics uncertainties propagation in a PWR Rod Ejection Accident modeling - Analysis methodology and first results, ANS Best Estimate Plus Uncertainty International Conference (BEPU), Lucca, 2018 [Google Scholar]
  19. T. Santner, B. Williams, W. Notz, The Design and Analysis of Computer Experiments (Springer, 2003) [Google Scholar]
  20. A. Owen, Sobol’ indices and shapley value, SIAM/ASA J. Uncertain. Quantification 2, 245 (2014) [CrossRef] [Google Scholar]
  21. E. Song, B. Nelson, J. Staum, Shapley effects for global sensitivity analysis: theory and computation, SIAM/ASA J. Uncertain. Quantification 4, 1060 (2016) [CrossRef] [Google Scholar]
  22. A. Gretton, R. Herbrich, A. Smola, O. Bousquet, B. Schölkopf, Kernel methods for measuring independence, J. Mach. Learn. Res. 6, 2075 (2005) [Google Scholar]
  23. M. De Lozzo, A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, J. Stat. Comput. Simul. 86, 3038 (2016) [CrossRef] [Google Scholar]
  24. J.O. Ramsey, B.W. Silverman, Functional Data Analysis (Springer, New York, 2005) [CrossRef] [Google Scholar]
  25. N. Benoumechiara, K. Elie-Dit-Cosaque, Shapley Effects for Sensitivity Analysis with Dependent Inputs: Bootstrap and Kriging-Based Algorithms, ESAIM: Proc. Surv. 65, 266 (2019) [CrossRef] [Google Scholar]
  26. R Core Team, R: A Language and Environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2013) [Google Scholar]
  27. B. Iooss et al., Sensitivity: Global Sensitivity Analysis of Model Outputs, R package version 1.22.0, 2020. https://CRAN.R-project.org/package=sensitivity [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.