Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 6, 2020
INSIDER
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjn/2020002 | |
Published online | 30 March 2020 |
- S. Rassou, T. Vercouter, C. Mariet, Sustainable Solvent Extraction Process for Fe Analysis in Radioactive Samples Based on Microfluidic Tools, Solvent Extr. Ion Exch. 38, 236 (2020) [Google Scholar]
- H. Liu, P.K. Dasgupta, Analytical chemistry in a drop. Solvent extraction in a microdrop, Anal Chem. 68, 1817 (1996) [CrossRef] [Google Scholar]
- R. Burakham et al., Exploiting sequential injection analysis with lab-at-valve (LAV) approach for on-line liquid–liquid micro-extraction spectrophotometry, Talanta 68, 416 (2005) [CrossRef] [Google Scholar]
- M.A. Jeannot, F.F. Cantwell, Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle, Anal. Chem. 69, 235 (1997) [CrossRef] [Google Scholar]
- M. Ma, F.F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop, Anal. Chem. 71, 388 (1999) [CrossRef] [Google Scholar]
- S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 71, 2650 (1999) [CrossRef] [Google Scholar]
- L. Kocúrová, I.S. Balogh, V. Andruch, Solvent microextraction: A review of recent efforts at automation, Microchem. J. 110, 599 (2013) [CrossRef] [Google Scholar]
- A. Spietelun et al., Green aspects, developments and perspectives of liquid phase microextraction techniques, Talanta 119, 34 (2014) [CrossRef] [Google Scholar]
- A. Manz, J.C. Eijkel, Miniaturization and chip technology. What can we expect? Pure Appl. Chem. 73, 1555 (2001) [CrossRef] [Google Scholar]
- M. Tokeshi, T. Minagawa, T. Kitamori, Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride, Anal. Chem. 72, 1711 (2000) [CrossRef] [Google Scholar]
- H. Becker, W. Dietz, P. Dannberg, Microfluidic manifolds by polymer hot embossing for µ-TAS applications in Micro Total Analysis Systems (Springer, Berlin, 1998) [Google Scholar]
- J.P. Brody, P. Yager, Diffusion-based extraction in a microfabricated device, Sens. Actuators A Phys. 58, 13 (1997) [CrossRef] [Google Scholar]
- M. Tokeshi, T. Kitamori, Continuous flow chemical processing on a microchip using microunit operations and a multiphase flow network, Prog. Nucl. Energy 47, 434 (2005) [CrossRef] [Google Scholar]
- T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration, Science 298, 580 (2002) [CrossRef] [PubMed] [Google Scholar]
- D. Ciceri, J.M. Perera, G.W. Stevens, The use of microfluidic devices in solvent extraction, J. Chem. Technol. Biotechnol. 89, 771 (2014) [CrossRef] [Google Scholar]
- G. Hellé, C. Mariet, G. Cote, Microfluidic tools for the liquid–liquid extraction of radionuclides in analytical procedures, Procedia Chem. 7, 679 (2012) [CrossRef] [Google Scholar]
- G. Hellé, C. Mariet, G. Cote, Liquid–liquid microflow patterns and mass transfer of radionuclides in the systems Eu (III)/HNO 3/DMDBTDMA and U (VI)/HCl/Aliquat® 336, Microfluid. Nanofluidics 17, 1113 (2014) [CrossRef] [Google Scholar]
- G. Hellé, C. Mariet, G. Cote, Liquid–liquid two-phase microflow patterns and mass transfer of radionuclides, in 2014 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) , 2014 [Google Scholar]
- H. Hotokezaka et al., System for high-level radioactive waste using microchannel chip extraction behavior of metal ions from aqueous phase to organic phase in microchannel, Prog. Nucl. Energy 47, 439 (2005) [CrossRef] [Google Scholar]
- D. Tsaoulidis et al., Extraction of dioxouranium (VI) in small channels using ionic liquids, Chem. Eng. Res. Des. 91, 681 (2013) [CrossRef] [Google Scholar]
- G. Hellé, C. Mariet, G. Cote, Liquid–liquid extraction of uranium (VI) with Aliquat® 336 from HCl media in microfluidic devices: Combination of micro-unit operations and online ICP-MS determination, Talanta 139, 123 (2015) [CrossRef] [Google Scholar]
- F. Kubota, J.I. Uchida, M. Goto, Extraction and separation of rare earth metals by a microreactor, Solvent Extr. Res. Dev. 10, 93 (2003) [Google Scholar]
- T. Maruyama et al., Liquid membrane operations in a microfluidic device for selective separation of metal ions, Anal. Chem. 76, 4495 (2004) [CrossRef] [Google Scholar]
- S. Nishihama, Y. Tajiri, K. Yoshizuka, Separation of lanthanides using micro solvent extraction system, Ars Separatoria Acta 4, 18 (2006) [Google Scholar]
- Y. Ban et al., Extraction of Am (III) at the interface of organic-aqueous two-layer flow in a microchannel, J. Nucl. Sci. Technol. 48, 1313 (2011) [CrossRef] [Google Scholar]
- M. Yamamoto et al., Development of an online measurement system using an alpha liquid scintillation counter and a glass-based microfluidic solvent extraction device for plutonium analysis, Appl. Radiat. Isot. 152, 37 (2019) [CrossRef] [Google Scholar]
- B. Malengier, S. Pushpavanam, S. D'haeyer, Optimizing performance of liquid–liquid extraction in stratified flow in micro-channels, J. Micromech. Microeng. 21, 115030 (2011) [CrossRef] [Google Scholar]
- L.R. Mason et al., Modelling of interfacial mass transfer in microfluidic solvent extraction: part I. Heterogenous transport, Microfluid. Nanofluidics 14, 197 (2013) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.