Open Access
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 49
Number of page(s) 15
Published online 19 June 2020
  1. B. Geslot, F. Berhouet, L. Oriol, S. Bréaud, C. Jammes, P. Filliatre, J-F. Villard, Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors. in 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, 2009 [Google Scholar]
  2. Ch. Blandin, S. Breaud, L. Vermeeren, M. Weber, Development of new sub-miniature fission chambers: Modelling and experimental tests, Prog. Nucl. Energy 43, 349 (2003) [CrossRef] [Google Scholar]
  3. T. Unruh, M. Reichenberger, S. Stevenson, D. McGregor, Enhanced micro-pocket fission detector for high temperature reactor evaluations, in NPIC&HMIT, 2017 [Google Scholar]
  4. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, GNU Octave version 4.4.1 manual: a high-level interactive language for numerical computations, 2017 [Google Scholar]
  5. G.F. Knoll, Radiation detection and measurement (John Wiley & Sons, New York, 2000) [Google Scholar]
  6. O. Poujade, A. Lebrun, Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects, Nucl. Instrum. Methods Phys. Res. A 433, 673 (1999) [CrossRef] [Google Scholar]
  7. S. Chabod, Saturation current of miniaturized fission chambers. Nucl. Instrum. Methods Phys. Res. A 598, 578 (2009) [CrossRef] [Google Scholar]
  8. S. Chabod, G. Fioni, A. Letourneau, and F. Marie, Modelling of fission chambers in current mode–analytical approach, Nucl. Instrum. Methods 566, 633 (2006) [CrossRef] [Google Scholar]
  9. P. Filliatre, C. Jammes, B. Geslot, R. Veenhof, A monte carlo simulation of the fission chambers neutron-induced pulse shape using the Garfield suite, Nucl. Instrum. Methods Phys. Res. Sect. A 678, 139 (2012) [CrossRef] [Google Scholar]
  10. Zs. Elter, PyFC: a TRIM-based fission chamber pulse shape simulator. Technical report, Chalmers University of Technology, 2015 [Google Scholar]
  11. A. Keddar, J. Moteff, S.B. Wright, Y. Droulers, W.L. Zijp, R.E. Dahl, H.H. Yoshikawa, Neutron fluence measurements. Technical report, IAEA, 1970 [Google Scholar]
  12. C. Jammes, P. Filliatre, P. Loiseau, B. Geslot, On the impact of the fissile coating on the fission chamber signal, Nucl. Instrum. Methods Phys. Res. A 681, 101 (2012) [CrossRef] [Google Scholar]
  13. O. Jarvis, Kaye & Laby Online, chapter Nuclear fission and fusion, and neutron interactions, pp. 531–554. 2018, [Google Scholar]
  14. M.F. Jammes, Energy released in fission, J. Nucl. Energy 23, 517 (1969) [CrossRef] [Google Scholar]
  15. A.K. Chung, M.A. Prelas, The transport of heavy charged particles in a cylindrical nuclear-pumped plasma, Nucl. Sci. Eng. 86, 267 (1984) [CrossRef] [Google Scholar]
  16. V.Y. Mat’ev, Energy deposition by fission fragments in nuclear-pumped lasers: 1. A general method of calculation, Tech. Phys. 46, 68 (2001) [CrossRef] [Google Scholar]
  17. H.D. Betz, Heavy ion charges states, in Condensed matter: Applied atomic collision physics, Vol. 4 (Academic press, Cambridge, 1983), pp. 1–42 [Google Scholar]
  18. J.F. Ziegler, The stopping of energetic light ions in elemental matter, J. Appl. Phys / Rev. Appl. Phys 85, 1249 (1999) [NASA ADS] [CrossRef] [Google Scholar]
  19. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Srim-the stopping and range of ions inmatter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010) [Google Scholar]
  20. J.P. Biersack, L.G. Haggmark, A Monte-Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods 174, 257 (1980) [Google Scholar]
  21. J. Ziegler, J. Biersack, M. Ziegler, SRIM - The Stopping and Range of Ions in Matter (SRIM Company, 2008) [Google Scholar]
  22. J.P. Biersack, Calculation of projected range - analytical solutions and a simple general algorithm, Nucl. Instrum. Methods 182–183, 199 (1981) [Google Scholar]
  23. J.P. Biersack, New projected range algorithm as derived from transport equations, Z. Phys. A - Atoms and Nuclei 305, 95 (1982) [CrossRef] [Google Scholar]
  24. D.G. Ashworth, M. Bowyer, R. Owen, A revised version of PRAL-the projected range algorithm, J. Phys. D Appl. Phys. 24, 1376 (2000) [CrossRef] [Google Scholar]
  25. D. Nguyen, L. Grossman, Ionisation by fission fragments escaping from a source medium, Nucl. Sci. Eng. 30, 233 (1967) [CrossRef] [Google Scholar]
  26. G.H. Miley, P.E. Thiess, A unified approach to two region ionization-excitation density calculations, Nucl. Technol. 6, 434 (1969) [Google Scholar]
  27. G. Erskine, Calculation of the energy per ion pair for α-particles in helium, Proc. Roy. Soc. London A, 224, 362 (1954) [CrossRef] [Google Scholar]
  28. J. Valentine, S. Curran, Average energy expenditure per ion pair in gases and gas mixtures, Rep. Prog. Phys. 21, 1 (1958) [CrossRef] [Google Scholar]
  29. International Commission on Radiation Units and Measurements. ICRU report 31, average energy required to produce an ion pair, 1979 [Google Scholar]
  30. J. Townsend, Motion of electrons in gases, J. Franklin Ins. 120, 511 (1925) [Google Scholar]
  31. G. Hagelaar, L. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol. 14, 722 (2005) [CrossRef] [Google Scholar]
  32. G.G. Raju, Gaseous Eectronics: theory and practice (Taylor and Francis, Oxfordshire, 2006) [Google Scholar]
  33. L. Frost, Effect of variable ionic mobility on ambipolar diffusion, Phys. Rev. 105, 354 (1957) [CrossRef] [Google Scholar]
  34. R.I. Goyatina, S.A. Maiorov, Approximation of the characteristics of ion drift in parent gas, Plasma Phys. Rep. 43, 75 (2017) [CrossRef] [Google Scholar]
  35. W. Shockley, Currents to conductors induced by a moving point charge, J. Appl. Phys. 9, 635 (1938) [CrossRef] [Google Scholar]
  36. S. Ramo, Currents induced by electron motion, Proc IRE 27, 584 (1939) [Google Scholar]
  37. Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instrum. Methods Phys. Res. A 463, 250 (2001) [CrossRef] [Google Scholar]
  38. S. Kakutani, Two-dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. 20, 706 (1944) [CrossRef] [Google Scholar]
  39. R. Schlott, A Monte-Carlo method for the dirichlet problem of dielectric wedges IEEE Trans. Microw. Theory Tech. 36, 724–730 (1988) [CrossRef] [Google Scholar]
  40. F. sanchez Quessada Monte-carlo method for discrete inhomogeneous problems, Proc. IEE 125, 1400 (1978) [Google Scholar]
  41. M. Sadiky, Numerical techniques in electromagnetics (CSC Press, Boca Raton, 2001) [Google Scholar]
  42. T. Unruh, J. Rempe, D. McGregor, P. Ugorowki, M. Reichenberger, Neet micro-pocket fission detector-fy 2012 status report. Technical report, INL, 2012 [Google Scholar]
  43. D. McGregor, M. Ohmes, R. Ortiz, A. Sabbir Ahmed, J. Shultis, Micro-pocket fission detectors (mpfd) for in-core neutron flux monitoring, Nucl. Instrum. Methods Phys. Res. A 554, 494 (2005) [CrossRef] [Google Scholar]
  44. V. Patel, M. Reichenberger, J. Roberts, T. Unruh, D. McGregor, Mcnp6 simulated performance of micro-pocket fission detectors (mpfds) in the transient reactor test (treat) facility, Ann. Nucl. Energy 103, 191 (2017) [CrossRef] [Google Scholar]
  45. M. Reichenberger, T. Unruh, P. Ugorowski, T. Ito, J. Roberts, S. Stevenson, D. Nichols, D. McGregoire, Micro-pocket fission detectors (mpfds) for in-core neutron detection, Ann. Nucl. Energy 87, 318 (2016) [CrossRef] [Google Scholar]
  46. M. Reichenberger, D. Nichols, S. Stevenson, T. Swope, C. Hilger, R. Fronk, J. Geuther, S. McGregor, Fabrication and testing of a 5- node micro-pocket fission detector array for real-time, spatial, iron wire port neutron-flux monitoring, Ann. Nucl. Energy, 110, 995 (2017) [CrossRef] [Google Scholar]
  47. D. Meeker, 2016 Finite element method magnetics, version 4.2. [Google Scholar]
  48. D. Nichols, M. Reichenberger, S. Stevenson, C. Hilger, T. Swope, K. Kellogg, J. Hewitt, J. Roberts, D. McGregor, Triga pulse tracking utilizing a multi-node micro-pocket fission detector, Trans. Am. Nucl. Soc. 119, 328 (2018) [Google Scholar]
  49. G. de Izarra. Cosicaf software 2019, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.