Open Access
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 47
Number of page(s) 12
Published online 20 May 2020
  1. M. Tourasse, M. Boidron, B. Pasquet, Fission product behaviour in phenix fuel pins at high burnup, J. Nucl. Mater. 188, 49 (1992) [CrossRef] [Google Scholar]
  2. M. Inoue, K. Maeda, K. Katsuyama, K. Tanaka, K. Mondo, M. Hisada, Fuel-to-cladding gap evolution and its impact on thermal performance of high burnup fast reactor type uranium-plutonium oxide fuel pins, J. Nucl. Mater. 326, 59 (2004) [CrossRef] [Google Scholar]
  3. K. Maeda, 3.16 - ceramic fuel-cladding interaction, Compr. Nucl. Mater. 3, 443 (2012) [CrossRef] [Google Scholar]
  4. International Atomic Energy Agency, Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies-Operational Behaviour, number NF-T-4.3 in Nuclear Energy Series, Vienna, 2012; [Google Scholar]
  5. Y. Guerin, Fuel performance of fast spectrum oxide fuel, in Comprehensive Nuclear Materials, edited by R.J. Konings (Elsevier, Oxford 2012), pp. 547–578 [CrossRef] [Google Scholar]
  6. M. Lainet, B. Michel, J.-C. Dumas, M. Pelletier, I. Ramière, Germinal, a fuel performance code of the pleiades platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516, 30 (2019) [CrossRef] [Google Scholar]
  7. V. Marelle, Validation of PLEIADES/ALCYONE 2.0 fuel performance code, Water Reactor Fuel Performance Meeting, Jeju, South Korea, 2017 [Google Scholar]
  8. J.-C. Melis, J.-P. Piron, L. Roche, Fuel modeling at high burn-up: recent development of the germinal code, J. Nucl. Mater. 204, 188 (1993) [CrossRef] [Google Scholar]
  9. B. Baurens, J. Sercombe, C. Riglet-Martial, L. Desgranges, L. Trotignon, P. Maugis, 3D thermo-chemical-mechanical simulation of power ramps with alcyone fuel code, J. Nucl. Mater. 452, 578 (2014) [CrossRef] [Google Scholar]
  10. P. Konarski, J. Sercombe, C. Riglet-Martial, L. Noirot, I. Zacharie-Aubrun, K. Hanifi, M. Fregonèsé, P. Chantrenne, 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion, J. Nucl. Mater. 519, 104 (2019) [CrossRef] [Google Scholar]
  11. S. Simunovic, J. W. Mcmurray, T. M. Besmann, E. Moore, M.H.A. Piro, Coupled Mass and Heat Transport Models for Nuclear Fuels using Thermodynamic Calculations, Technical Report, Oak Ridge National Laboratory, 2018 [CrossRef] [Google Scholar]
  12. M. Piro, S. Simunovic, T. Besmann, B. Lewis, W. Thompson, The thermochemistry library thermochimica, Comput. Mater. Sci. 67, 266 (2013) [CrossRef] [Google Scholar]
  13. R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. Andrs, R. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423, 149 (2012) [CrossRef] [Google Scholar]
  14. T. Uwaba, J. Nemoto, I. Ishitani, M. Ito, Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior, Nucl. Eng. Des. 331, 186 (2018) [CrossRef] [Google Scholar]
  15. M. Ishida, et al., in Proceedings of the fall meeting of the atomic energy society of Japan, 1987, p. J77 [Google Scholar]
  16. Y. Saito, et al., in Proceedings of the fall meeting of the atomic energy society of Japan, 1988, p. H14 [Google Scholar]
  17. T. Uwaba, T. Mizuno, J. Nemoto, I. Ishitani, M. Ito, Development of a mixed oxide fuel pin performance analysis code “CEDAR”: Models and analyses of fuel pin irradiation behavior, Nucl. Eng. Des. 280, 27 (2014) [CrossRef] [Google Scholar]
  18. P. Spencer, A brief history of CALPHAD, Calphad 32, 1 (2008) [CrossRef] [Google Scholar]
  19. U.R. Kattner, The Calphad method and its role in material and process development. Tecnol. Metal. Mater. Min. 13, 3 (2016) [CrossRef] [Google Scholar]
  20. P. Garcia, J.P. Piron, D. Baron, A model for the oxygen potential of oxide fuels at high burnup, Technical Report, International Atomic Energy Agency (IAEA), 1997, [Google Scholar]
  21. B. Sundman, U.R. Kattner, M. Palumbo, S.G. Fries, Opencalphad – a free thermodynamic software, Integr. Mater. Manuf. Innov. 4, 1 (2015) [CrossRef] [Google Scholar]
  22. B. Sundman, X.-G. Lu, H. Ohtani, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Comput. Mater. Sci. 101, 127 (2015) [CrossRef] [Google Scholar]
  23. T. Besmann, SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems (Oak Ridge National Lab., TN, USA, 1977) [Google Scholar]
  24. G. Eriksson, Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium composition in multiphase systems, Chem. Scr. 8, 100 (1975) [Google Scholar]
  25. C. Weber, Convergence of the equilibrium code solgasmix, J. Comput. Phys. 145, 655 (1998) [CrossRef] [Google Scholar]
  26. TAF-ID homepage, 2019, [Google Scholar]
  27. C. Gueneaú, S. Gossé, A. Quaini, N. Dupin, B. Sundman, M. Kurata, T. Besmann, P. Turchi, J. Dumas, E. Corcoran, M. Piro, T. Ogata, R. Hania, B. Lee, R. Kennedy, S. Massara, FUELBASE, TAF-ID databases and OC software: Advanced computational tools to perform thermodynamic calcu-lations on nuclear fuel materials, in Proceedings of the 7th European Review Meeting on Severe Accident Research 2015, Marseille, France, 2015 [Google Scholar]
  28. M. Hillert, The compound energy formalism, J. Alloys Compd. 320, 161 (2001) [CrossRef] [Google Scholar]
  29. C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.-C. Dumas, S. Gossé, S. Chatain, F. D. Bruycker, D. Manara, R.J. Konings, Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, J. Nucl. Mater. 419, 145 (2011) [CrossRef] [Google Scholar]
  30. M. Hillert, B. Jansson, B. Sundman, J. Ågren, A two-sublattice model for molten solutions with different tendency for ionization, Metall. Trans. A 16, 261 (1985) [CrossRef] [Google Scholar]
  31. B. Sundman, Modification of the two-sublattice model for liquids, Calphad 15, 109 (1991) [CrossRef] [Google Scholar]
  32. H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater. 131, 221 (1985) [CrossRef] [Google Scholar]
  33. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo−Calc & DICTRA, computational tools for materials science, Calphad 26, 273 (2002) [CrossRef] [Google Scholar]
  34. T. Besmann, J. McMurray, B. Gaston, S. Simunovic, M. Piro, Modeling thermochemistry of fuel and coupling to fuel performance codes, in Proceedings of Top Fuel, Boise, ID, USA, 2016 [Google Scholar]
  35. E.H.P. Cordfunke, R.J.M. Konings, Thermochemical data for reactor materials and fission products: The ECN database, J. Phase Equilib. 14, 457 (1993) [CrossRef] [Google Scholar]
  36. R. Schram, R. Konings, W. Rijnsburger, TBASE CONSULT Manual, The Netherlands Energy Research Foundation ECN, 2002 [Google Scholar]
  37. E. Cordfunke, R. Konings, Thermochemical Data for Reactor Materials and Fission Products (North-Holland, Amsterdam, 1990) [Google Scholar]
  38. T.B. Lindemer, T.M. Besmann, Chemical thermodynamic representation of ⟨UO2±x⟩, J. Nucl. Mater. 130, 473 (1985) [CrossRef] [Google Scholar]
  39. T.M. Besmann, T.B. Lindemer, Chemical thermodynamic representation of ⟨PuO2−x⟩ and ⟨U1−zPuzOw⟩, J. Nucl. Mater. 130, 489 (1985) [CrossRef] [Google Scholar]
  40. T.B. Lindemer, J. Brynestad, Review and chemical thermodynamic representation of ⟨U1−z CezO2±x⟩ and ⟨U1−z LnzO2±x⟩; Ln = Y, La, Nd, Gd, J. Am. Ceram. Soc. 69, 867 (1986) [CrossRef] [Google Scholar]
  41. G. Rimpault, The ERANOS code and data system for fast reactor neutronic analyses, in Proceedings of the PHYSOR2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High Performance Computing, Seoul, South Korea, 2002 [Google Scholar]
  42. A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, JEFF Report 21: The JEFF-3.1 Nuclear Data Library, 2006 [Google Scholar]
  43. P. Verpeaux, T. Charras, A. Millard, CASTEM 2000: une approche moderne du calcul des structures (Pluralis, 1988) p. 261 [Google Scholar]
  44. V. Bouineau, M. Lainet, N. Chauvin, M. Pelletier, V. Di Marcello, P. Van Uffelen, C. Walker, Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation, American Nuclear Society - ANS; La Grange Park (United States), 2013 [Google Scholar]
  45. B. Lewis, W. Thompson, F. Iglesias, Fission Product Chemistry in Oxide Fuels, in Comprehensive Nuclear Materials edited by R.J. Konings (Elsevier, Oxford, 2012), pp. 515–546 [Google Scholar]
  46. J. Adams, M. Carboneau, National low-level waste management program radionuclide report series. Volume 2: niobium-94, 1995 [Google Scholar]
  47. T.B. Massalski, Binary alloy phase diagrams, 2nd edn. (ASM International, Materials Park, Ohio, 1990) [Google Scholar]
  48. C. Guéneau, A. Chartier, L.V. Brutzel, Thermodynamic and thermophysical properties of the actinide oxides, in Comprehensive Nuclear Materials edited by R.J. Konings (Elsevier, Oxford, 2012), pp. 21–59 [CrossRef] [Google Scholar]
  49. K. Naito, T. Tsuji, T. Matsui, A. Date, Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel, J. Nucl. Mater. 154, 3 (1988) [CrossRef] [Google Scholar]
  50. K. Bagnall, Selenium, tellurium and polonium, in The Chemistry of Sulphur, Selenium, Tellurium and Polonium, Pergamon Texts in Inorganic Chemistry edited by M. Schmidt, W. Siebert, K. Bagnall (Pergamon, Oxford, 1973), pp. 935–1008 [Google Scholar]
  51. J. McFarlane, J.C. LeBlanc, Fission-product tellurium and cesium telluride chemistry revisited, Technical Report, Canada, 1996, [Google Scholar]
  52. E. Aitken, Thermal diffusion in closed oxide fuel systems, J. Nucl. Mater. 30, 62 (1969) [CrossRef] [Google Scholar]
  53. A. Karahan, J. Buongiorno, Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors, J. Nucl. Mater. 396, 272 (2010) [CrossRef] [Google Scholar]
  54. J. Rouault, P. Chellapandi, B. Raj, P. Dufour, C. Latge, L. Paret, P. Pinto, G.H. Rodriguez, G.-M. Gautier, G.-L. Fiorini, M. Pelletier, D. Gosset, S. Bourganel, G. Mignot, F. Varaine, B. Valentin, P. Masoni, P. Martin, J.-C. Queval, D. Broc, N. Devictor, Sodium Fast Reactor Design:Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety (Springer US, Boston, MA, 2010), pp. 2321–2710 [Google Scholar]
  55. T. Ishii, T. Mizuno, Thermal conductivity of cesium molybdate Cs2MoO4, J. Nucl. Mater. 231, 242 (1996) [CrossRef] [Google Scholar]
  56. T. Ishii, T. Mizuno, An investigation of the thermal conductivity of Cs2MoO4, J. Nucl. Mater. 247, 82 (1997) [CrossRef] [Google Scholar]
  57. M. Takano, K. Minato, K. Fukuda, S. Sato, H. Ohashi, Thermal expansion and thermal conductivity of cesium uranates, J. Nucl. Sci. Technol. 35, 485 (1998) [CrossRef] [Google Scholar]
  58. I. Schewe-Miller, P. Böttcher, Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te, Z. Kristallograph. 196, 137 (1991) [CrossRef] [Google Scholar]
  59. T.B. Rymer, P.G. Hambling, The lattice constant of caesium iodide, Acta Crystallograph. 4, 565 (1951) [CrossRef] [Google Scholar]
  60. F.X.N.M. Kools, A.S. Koster, G.D. Rieck, The structures of potassium, rubidium and caesium molybdate and tungstate, Acta Crystallograph. Sect. B 26, 1974 1970 [Google Scholar]
  61. A. Reis, H. Hoekstra, E. Gebert, S. Peterson, Redetermination of the crystal structure of barium uranate, J. Inorg. Nucl. Chem. 38, 1481 (1976) [CrossRef] [Google Scholar]
  62. C. Sari, G. Schumacher, Oxygen redistribution in fast reactor oxide fuel, J. Nucl. Mater. 61, 192 (1976) [CrossRef] [Google Scholar]
  63. C. Shuang-Lin, C. Kuo-Chih, Y. Chang, On a new strategy for phase diagram calculation 1. Basic principles, Calphad 17, 237 (1993) [CrossRef] [Google Scholar]
  64. C. Shuang-Lin, C. Kuo-Chih, Y. Chang, On a new strategy for phase diagram calculation 2. Binary systems, Calphad 17, 287 (1993) [CrossRef] [Google Scholar]
  65. L. Noirot, Margaret: A comprehensive code for the description of fission gas behavior, Nucl. Eng. Des. 241, 2099 2011 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.