Highlight
Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 3
Number of page(s) 18
DOI https://doi.org/10.1051/epjn/2019055
Published online 15 January 2020
  1. J. Rydberg, Solvent extraction principles and practice , 2nd edn. (M. Dekker, New York, 2004) [Google Scholar]
  2. M.J. Hudson, An introduction to some aspects of solvent extraction chemistry in hydrometallurgy, Hydrometallurgy 9 , 149 (1982) [CrossRef] [Google Scholar]
  3. J.-F. Parisot, Treatment and recycling of spent nuclear fuel: Actinide partitioning : application to waste management (CEA, Paris, 2008) [Google Scholar]
  4. T. Zemb, C. Bauer, P. Bauduin, L. Belloni, C. Déjugnat, O. Diat, V. Dubois, J.-F. Dufrêche, S. Dourdain, M. Duvail, C. Larpent, F. Testard, P.S. Rostaing, Recycling metals by controlled transfer of ionic species between complex fluids: En route to “ienaics”, Colloid Polym. Sci. 293 , 1 (2015) [CrossRef] [Google Scholar]
  5. K. Osseo-Asare, Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-n-butyl phosphatediluent-water-electrolyte system, Adv. Colloid Interface Sci. 37 , 123 (1991) [CrossRef] [Google Scholar]
  6. F. Rodrigues, G. Ferru, L. Berthon, N. Boubals, P. Guilbaud, C. Sorel, O. Diat, P. Bauduin, J.P. Simonin, J.P. Morel, M.-N. Desrosiers, M.C. Charbonnel, New insights into the extraction of uranium(VI) by an N,N-dialkylamide, Mol. Phys. 112, 1362 (2014) [CrossRef] [Google Scholar]
  7. P. Guilbaud, T. Zemb, Depletion of water-in-oil aggregates from poor solvents: Transition from weak aggregates towards reverse micelles, Curr. Opin. Colloid Interface Sci. 20 , 71 (2015) [CrossRef] [Google Scholar]
  8. N. Descouls, J.C. Morisseau, C. Musikas, 2015 Process for the extraction of uranium (VI) and/or plutonium (IV) present in an aqueous solution by means of N,N-dialkylamides. US Patent 4,772,429 [Google Scholar]
  9. T.H. Siddall, Effects of structure of N,N-disubstituted amides on their extraction of actinide and zirconium nitrates and of nitric acid, J. Phys. Chem. 64, 1863 (1960) [CrossRef] [Google Scholar]
  10. P.N. Pathak, N,N-Dialkyl amides as extractants for spent fuel reprocessing: an overview, J. Radioanal. Nucl. Chem. 300 , 7 (2014) [CrossRef] [Google Scholar]
  11. D.R. Prabhu, A. Sengupta, M.S. Murali, P.N. Pathak, Role of diluents in the comparative extraction of Th(IV), U(VI) and other relevant metal ions by DHOA and TBP from nitric acid media and simulated wastes: Reprocessing of U–Th based fuel in perspective, Hydrometallurgy 158 , 132 (2015) [CrossRef] [Google Scholar]
  12. P.N. Pathak, A.S. Kanekar, D.R. Prabhu, V.K. Manchanda, Comparison of Hydrometallurgical Parameters of N,N-Dialkylamides and of Tri-n-Butylphosphate, Sol. Extraction Ion Exch. 27 , 683 (2009) [CrossRef] [Google Scholar]
  13. S. Abott, Surfactant Science, https://www.stevenabbott.co.uk/_downloads/Surfactant Science Principles and Practice.pdf [Google Scholar]
  14. H.J. Karam, J.C. Bellinger, Deformation and breakup of liquid droplets in a simple shear field, Ind. Eng. Chem. Fundamentals 7 , 576 (1968) [CrossRef] [Google Scholar]
  15. Q. Yang, H. Xing, B. Su, K. Yu, Z. Bao, Y. Yang, Q. Ren, Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect, Chem. Eng. J. 181, 334 (2012) [CrossRef] [Google Scholar]
  16. P. Ning, X. Lin, X. Wang, H. Cao, High-efficient extraction of vanadium and its application in the utilization of the chromium-bearing vanadium slag, Chem. Eng. J. 301 , 132 (2016) [CrossRef] [Google Scholar]
  17. P.N. Pathak, L.B. Kumbhare, V.K. Manchanda, Structural effects in N,N-Dialkyl amides on their extraction behavior towards uranium and thorium, Sol. Extraction Ion Exch. 19 , 105 (2001) [CrossRef] [Google Scholar]
  18. N. Condamines, P. Turq, C. Musikas, The extraction by N,N-dialkylamides III. A Thermodynamical approach of the multicomponent extraction organic media by a statistical mechanic theory, Sol. Extr. Ion Exch. 11 , 187 (1993) [CrossRef] [Google Scholar]
  19. K.K. Gupta, V.K. Manchanda, S. Sriram, G. Thomas, P.G. Kulkarni, R.K. Singh, Third phase formation in the extraction of uranyl nitrate by N,N-dialkyl aliphatic amides, Sol. Extr. Ion Exch. 18 , 421 (2000) [CrossRef] [Google Scholar]
  20. P.K. Verma, P.N. Pathak, N. Kumari, B. Sadhu, M. Sundararajan, V.K. Aswal, P.K. Mohapatra, Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies, J. Phys. Chem. B 118 , 14388 (2000) [CrossRef] [Google Scholar]
  21. E. Acher, Y. Hacene Cherkaski, T. Dumas, C. Tamain, D. Guillaumont, N. Boubals, G. Javierre, C. Hennig, P.L. Solari, M.-C. Charbonnel, Structures of plutonium(IV) and uranium(VI) with N,N-dialkyl amides from crystallography, X-ray absorption spectra, and theoretical calculations, Inorg. Chem. 55 , 5558 (2016) [CrossRef] [Google Scholar]
  22. G. Ferru, D. Gomes Rodrigues, L. Berthon, O. Diat, P. Bauduin, P. Guilbaud, Elucidation of the structure of organic solutions in solvent extraction by combining molecular dynamics and X-ray scattering, Angew. Chem. Int. Ed 53 , 5346 (2014) [CrossRef] [Google Scholar]
  23. G. Ferru, L. Berthon, C. Sorel, O. Diat, P. Bauduin, J.-P. Simonin, Influence of extracted solute on the organization of a monoamide organic solution, Proc. Chem. 7 , 27 (2012) [CrossRef] [Google Scholar]
  24. G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for experimenters: Design, innovation, and discovery, 2nd edn. (Wiley-Interscience, Hoboken, NJ, 2005) [Google Scholar]
  25. W. Davies, U. Gray, A rapid and specific titrimetric method for the precise determination of uranium using iron (II) sulphate as reductant, Talanta 11, 1203 (1964) [CrossRef] [Google Scholar]
  26. A.R. Eberle, M.W. Lerner, C.G. Goldbeck, C.J. Rodden, Titrimetric determination of uranium in product, fuel and scrap materials after ferrous ion reduction in phosphoric acid; manual and automatic titration, in Safeguards Techniques (1970) [Google Scholar]
  27. A. Klamt, Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99, 2224 (1995) [CrossRef] [Google Scholar]
  28. A. Klamt, V. Jonas, T. Bürger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102 , 5074 (1998) [CrossRef] [Google Scholar]
  29. A. Klamt, COSMO-RS: From quantum chemistry to fluid phase thermodynamics and drug design , 1st edn. (Elsevier, Amsterdam, 2005) [Google Scholar]
  30. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 , 3098 (1988) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  31. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 , 8822 (1986) [NASA ADS] [CrossRef] [Google Scholar]
  32. A. Klamt, G. Schüürmann, COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2 , 799 (1993) [CrossRef] [Google Scholar]
  33. A. Schäfer, A. Klamt, D. Sattel, J.C.W. Lohrenz, F. Eckert, COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems, Phys. Chem. Chem. Phys. 2, 2187 (2000) [CrossRef] [Google Scholar]
  34. TURBOMOLE V7.2., University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (1989–2007), TURBOMOLE GmbH (since 2007), 2017 [Google Scholar]
  35. F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, Turbomole, WIREs Comput. Mol. Sci. 4 , 91 (2014) [CrossRef] [Google Scholar]
  36. A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. Hunter, 99, 2224 (1995) [CrossRef] [Google Scholar]
  37. A. Klamt, V. Jonas, T. Bürger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102 , 5074 (1998) [CrossRef] [Google Scholar]
  38. A. Klamt, The COSMO and COSMO-RS solvation models, WIREs Comput. Mol. Sci. 8 , e1338 (2018) [CrossRef] [Google Scholar]
  39. M. Pleines, W. Kunz, T. Zemb, D. Benczédi, W. Fieber, Prediction of the viscosity peak of giant micelles in the presence of salt and fragrances, 2018, submitted [Google Scholar]
  40. K. Shinoda, E. Hutchinson, Pseudo-phase separation model for thermodynamic calculations on micellar solutions, J. Phys. Chem. 66 , 577 (1962) [CrossRef] [Google Scholar]
  41. C. Tanford, The hydrophobic effect and the organization of living matter, Science 200, 1012 (1978) [CrossRef] [PubMed] [Google Scholar]
  42. D.J. Mitchell, B.W. Ninham, Micelles, vesicles and microemulsions, J. Chem. Soc. Faraday Trans. 2, 77, 601 (1981) [CrossRef] [Google Scholar]
  43. S.T. Hyde, I.S. Barnes, B.W. Ninham, Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice, Langmuir 6, 1055 (1990) [CrossRef] [Google Scholar]
  44. A. Fogden, S.T. Hyde, G. Lundberg, Bending energy of surfactant films, Faraday Trans. 87 , 949 (1991) [CrossRef] [Google Scholar]
  45. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976) [CrossRef] [Google Scholar]
  46. M.E. Cates, Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions, Macromolecules 20, 2289 (1987) [CrossRef] [Google Scholar]
  47. M.E. Cates, S.J. Candau, Statics and dynamics of worm-like surfactant micelles, J. Phys.: Condens. Matter 2 , 6869 (1990) [CrossRef] [Google Scholar]
  48. M.E. Cates, S.M. Fielding, Rheology of giant micelles, Adv. Phys. 55 , 799 (2006) [CrossRef] [Google Scholar]
  49. F. Lequeux, Reptation of connected wormlike micelles, Europhys. Lett. 19 , 675 (1992) [CrossRef] [Google Scholar]
  50. S.J. Candau, A. Khatory, F. Lequeux, F. Kern, Rheological behaviour of wormlike micelles: Effect of salt content, J. Phys. IV France 03 , C1-197 (1993) [CrossRef] [EDP Sciences] [Google Scholar]
  51. A. Khatory, F. Lequeux, F. Kern, S.J. Candau, Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content, Langmuir 9, 1456 (1993) [CrossRef] [Google Scholar]
  52. S. May, Molecular packing in cylindrical micelles, in Giant micelles: properties and applications, edited by R. Zana (Taylor & Francis, Boca Raton, 2007), pp. 41–80 [CrossRef] [Google Scholar]
  53. C.R. Safinya, E.B. Sirota, D. Roux, G.S. Smith, Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity, Phys. Rev. Lett. 62, 1134 (1989) [CrossRef] [PubMed] [Google Scholar]
  54. P. Pieruschka, S. Marčelja, Statistical mechanics of random bicontinuous phases, J. Phys. II France 2 , 235 (1992) [CrossRef] [EDP Sciences] [Google Scholar]
  55. N. Condamines, C. Musikas, The extraction by N,N-Dialkylamides. II. Extraction of actinide cations, Sol. Extr. Ion Exch. 10 , 69 (1992) [CrossRef] [Google Scholar]
  56. G. Ferru, Spéciation moléculaire et supramoleculaire des systèmes extractants à base de monoamides, Dissertation, 2013 [Google Scholar]
  57. B. Moeser, D. Horinek, The role of the concentration scale in the definition of transfer free energies, Biophys. Chem. 196 , 68 (2015) [CrossRef] [Google Scholar]
  58. B.K. Paul, S.P. Moulik, The viscosity behaviours of microemulsions: An overview, Proc. Indian Natl. Sci. Acad. Pt. A 66 , 499 (2000) [Google Scholar]
  59. M. Pleines, Viscosity-control and prediction of microemulsions, Dissertation, University of Montpellier/Regensburg, 2018 [Google Scholar]
  60. T. Tlusty, Defect-induced phase separation in dipolar fluids, Science 290, 1328 (2000) [CrossRef] [Google Scholar]
  61. A.G. Zilman, S.A. Safran, Role of cross-links in bundle formation, phase separation and gelation of long filaments, Europhys. Lett. 63 , 139 (2003) [CrossRef] [Google Scholar]
  62. B. Bharti, A.-L. Fameau, M. Rubinstein, O.D. Velev, Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks, Nat. Mater. 14, 1104 (2015) [CrossRef] [Google Scholar]
  63. E.N. da C. Andrade, LVIII., A theory of the viscosity of liquids − Part II, Lond. Edinb. Dublin Philos. Mag. J. Sci. 17 , 698 (2009) [CrossRef] [Google Scholar]
  64. N. Ouerfelli, Z. Barhoumi, O. Iulian, Viscosity Arrhenius activation energy and derived partial molar properties in 1, 4-dioxane + water binary mixtures from 293.15 to 323.15 K, J. Sol. Chem. 41 , 458 (2012) [CrossRef] [Google Scholar]
  65. S.G.E. Giap, The hidden property of Arrhenius-type relationship: Viscosity as a function of temperature, J. Phys. Sci 21 , 29 (2010) [Google Scholar]
  66. L. Berthon, L. Martinet, F. Testard, C. Madic, T. Zemb, Solvent penetration and sterical stabilization of reverse aggregates based on the DIAMEX process extracting molecules: consequences for the third phase formation, Sol. Extr. Ion Exch. 25 , 545 (2007) [CrossRef] [Google Scholar]
  67. B. Abécassis, F. Testard, T. Zemb, L. Berthon, C. Madic, Effect of n-octanol on the structure at the supramolecular scale of concentrated dimethyldioctylhexylethoxymalonamide extractant solutions, Langmuir 19 , 6638 (2003) [CrossRef] [Google Scholar]
  68. N.P. Franks, M.H. Abraham, W.R. Lieb, Molecular organization of liquid n-octanol: an X-ray diffraction analysis, J. Pharma. Sci. 82 , 466 (1993) [CrossRef] [Google Scholar]
  69. Y. Marcus, Structural aspects of water in 1-octanol, J. Sol. Chem. 19 , 507 (1990) [CrossRef] [Google Scholar]
  70. A.S.C. Lawrence, M.P. McDonald, J.V. Stevens, Molecular association in liquid alcohol-water systems, Trans. Faraday Soc. 65 , 3231 (1969) [CrossRef] [Google Scholar]
  71. P. Bauduin, F. Testard, L. Berthon, T. Zemb, Relation between the hydrophile/hydrophobe ratio of malonamide extractants and the stability of the organic phase: investigation at high extractant concentrations, Phys. Chem. Chem. Phys. 9 , 3776 (2007) [CrossRef] [PubMed] [Google Scholar]
  72. T.N. Zemb, The DOC model of microemulsions: Microstructure, scattering, conductivity and phase limits imposed by sterical constraints, Colloids Surf. A 129 , 435 (1997) [CrossRef] [Google Scholar]
  73. P.A. Forsyth, S. Marčelja, D.J. Mitchell, B.W. Ninham, Onsager transition in hard plate fluid, J. Chem. Soc., Faraday Trans. 2 73 , 84 (1977) [CrossRef] [Google Scholar]
  74. D. Avnir, The fractal approach to heterogeneous chemistry: Surfaces, colloids, polymers (John Wiley & Sons, Chichester, 1992) [Google Scholar]
  75. A. Parker, W. Fieber, Viscoelasticity of anionic wormlike micelles: Effects of ionic strength and small hydrophobic molecules, Soft Matter 9 , 1203 (2013) [CrossRef] [Google Scholar]
  76. V.A. Parsegian, Van der Waals forces: A handbook for biologists , chemists, engineers, and physicists ( Cambridge University Press, Cambridge, 2006) [Google Scholar]
  77. F. Testard, T. Zemb, P. Bauduin, L. Berthon, Third-phase formation in liquid-liquid extraction: a colloidal approach, ChemInform 41, i (2010) [CrossRef] [Google Scholar]
  78. R. Oda, S.J. Candau, I. Huc, Gemini surfactants, the effect of hydrophobic chain length and dissymmetry, Chem. Commun. 21, 2105 (1997) [CrossRef] [Google Scholar]
  79. P. Bauduin, F. Testard, T. Zemb, Solubilization in alkanes by alcohols as reverse hydrotropes or “lipotropes”, J. Phys. Chem. B 112 , 12354 (2008) [CrossRef] [Google Scholar]
  80. S.K. Singh, P.S. Dhami, S.C. Tripathi, A. Dakshinamoorthy, Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of (2-Ethyl hexyl) Phosphonic acid, mono (2-ethyl hexyl) ester (PC88A) and Tri-n-butyl phosphate (TBP), Hydrometallurgy 95 , 170 (2009) [CrossRef] [Google Scholar]
  81. J. Rey, Étude des mécanismes d'extraction synergiques en séparation liquide-liquide. Dissertation, University of Montpellier, 2016 [Google Scholar]
  82. J. Rey, S. Dourdain, L. Berthon, J. Jestin, S. Pellet-Rostaing, T. Zemb, Synergy in extraction system chemistry: combining configurational entropy, film bending, and perturbation of complexation, Langmuir 31 , 7006 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.