Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 4
Number of page(s) 32
DOI https://doi.org/10.1051/epjn/2018050
Published online 28 February 2019
  1. C.G. Bucher, H.J. Pradlwarter, G.I. Schuëller, Computational Stochastic Structural Analysis (COSSAN) (Springer, Berlin, Heidelberg, 1991), pp. 301–315 [Google Scholar]
  2. B.M. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell, P.D. Hough, L.P. Swiler, Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 users manual, Technical Report SAND2010-2183, Sandia National Laboratories [Google Scholar]
  3. M. Baudin, R. Lebrun, B. Iooss, A.-L. Popelin, Openturns: An industrial software for uncertainty quantification in simulation, in Handbook of Uncertainty Quantification (Springer, Cham, 2017), pp. 2001–2038 [CrossRef] [Google Scholar]
  4. S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in Proceedings, SIAM Conference on Uncertainty Quantification, Savannah, GA, USA (ETH-Zürich, 2014), pp. 2554–2563 [Google Scholar]
  5. R. Brun, F. Rademakers, Nucl. Instrum. Methods A389, 81 (1997) [CrossRef] [Google Scholar]
  6. E. de Rocquigny, N. Devictor, S. Tarantola, Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management (John Wiley & Sons, NJ, 2008) [CrossRef] [Google Scholar]
  7. K. Martin, B. Hoffman, IEEE Software 24, 46 (2007) [CrossRef] [Google Scholar]
  8. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, Jupyter notebooks − a publishing format for reproducible computational workflows, in Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by F. Loizides, B. Schmidt (IOS Press, Amsterdam, 2016), pp. 87–90 [Google Scholar]
  9. M. Feathers, B. Lepilleur, Cppunit cookbook (2002), http://cppunit.sourceforge.net/doc/1.8.0/cppunit_cookbook.html [Google Scholar]
  10. J.C. Meza, R.A. Oliva, P.D. Hough, P.J. Williams, ACM Trans. Math. Softw. 33, 12 (2007) [CrossRef] [Google Scholar]
  11. M. Frigo, S.G. Johnson, Proc. IEEE 93, 216 (2005) (special issue on “Program Generation, Optimization, and Platform Adaptation”) [Google Scholar]
  12. S.G. Johnson, The nlopt nonlinear-optimization package, 2008, http://ab-initio.mit.edu/nlopt [Google Scholar]
  13. E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, T.S. Woodall, Open MPI: Goals, concept, and design of a next generation MPI implementation, in Proceedings, 11th European PVM/MPI Users' Group Meeting, Budapest, Hungary , 2004, pp. 97–104 [Google Scholar]
  14. C. Nvidia, Nvidia Corporation 120, 8 (2011) [Google Scholar]
  15. D. Van Heesch, Doxygen: Source code documentation generator tool, 2008, http://www.doxygen.org [Google Scholar]
  16. J.-B. Blanchard, Methodological reference guide for uranie v3.11.0, Technical Report, CEA, DEN/DANS/DM2S/STMF/LGLS/RT/17-006/A, updated version provided in the source of the Uranie platform for every new release [Google Scholar]
  17. M.D. McKay, R.J. Beckman, W.J. Conover, Technometrics 42, 55 (2000) [CrossRef] [Google Scholar]
  18. D. Morris, J. Mitchell, J. Stat. Plan. Inference 43, 381 (1995) [CrossRef] [Google Scholar]
  19. L. Pronzato, W. Muller, Stat. Comput. 22, 681 (2012) [CrossRef] [Google Scholar]
  20. G. Damblin, M. Couplet, B. Iooss, J. Simul. 7, 276 (2013) [CrossRef] [Google Scholar]
  21. R.L. Iman, W.J. Conover, Commun. Stat. Simul. Comput. 11, 311 (1982) [CrossRef] [Google Scholar]
  22. J.H. Halton, Commun. ACM 7, 701 (1964) [CrossRef] [Google Scholar]
  23. I. Sobol', USSR Comput. Math. Math. Phys. 7, 86 (1967) [CrossRef] [Google Scholar]
  24. K. Petras, Numer. Algorithms 26, 93 (2001) [CrossRef] [Google Scholar]
  25. A. De Crécy, P. Bazin, Determination of the uncertainties of the constitutive relationship of the CATHARE 2 code (M&C, 2001) [Google Scholar]
  26. K.-T. Fang, R. Li, A. Sudjianto, Design and Modeling for Computer Experiments, Computer Science & Data Analysis Series (Chapman & Hall/CRC, Boca Raton, 2005) [Google Scholar]
  27. N. Wiener, Am. J. Math. 60, 897 (1938) [CrossRef] [MathSciNet] [Google Scholar]
  28. R.H. Cameron, W.T. Martin, Ann. Math. 48, 385 (1947) [CrossRef] [Google Scholar]
  29. R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach (Springer-Verlag, New York, 1991) [Google Scholar]
  30. M. Baudin, J.-M. Martinez, Polynômes de chaos sous Scilab via la librairie NISP, in 42èmes Journées de Statistique, Marseille, France, 2010, https://hal.inria.fr/inria-00494680 [Google Scholar]
  31. W. McCulloch, W. Pitts, Bull. Math. Biophys. 5, 115 (1943) [CrossRef] [MathSciNet] [Google Scholar]
  32. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Report (Cornell Aeronautical Laboratory) (Spartan Books, Washington DC, 1962) [Google Scholar]
  33. C.E. Rasmussen, C.K. Williams, Gaussian Process for Machine Learning (MIT Press, MA, 2006) [Google Scholar]
  34. G. Matheron, La théorie des variables régionalisées, et ses applications, Fasicule 5 in Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau [Google Scholar]
  35. F. Bachoc, Estimation paramétrique de la fonction de covariance dans le modèle de krigeage par processus gaussiens: application à la quantification des incertitues en simulation numérique, Ph.D. thesis, Mathématiques appliquées, Paris 7, thèse de doctorat dirigée par Garnier, Josselin, 2013 [Google Scholar]
  36. R.M. Neal et al., Mcmc using hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo 2 (11) (Chapman and Hall/CRC) [Google Scholar]
  37. T. Robinson, F. Fallside, Compu. Speech Lang. 5, 259 (1991) [CrossRef] [Google Scholar]
  38. G.E. Hinton, Prog. Brain Res. 165, 535 (2007) [CrossRef] [Google Scholar]
  39. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, software, available from tensorflow.org (2015), https://www.tensorflow.org/ [Google Scholar]
  40. B. Iooss, P. Lemaître, A review on global sensitivity analysis methods, in Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, edited by C. Meloni, G. Dellino (Springer, NY, 2015), pp. 101–122 [CrossRef] [Google Scholar]
  41. R. Ghanem, D. Higdon, H. Owhadi (Eds.), Springer Handbook on Uncertainty Quantification (Springer, Cham, 2017) [CrossRef] [Google Scholar]
  42. A. Saltelli, K. Chan, E. Scott, Sensitivity Analysis (Wiley, New York, 2008) [Google Scholar]
  43. S. Da Veiga, J. Stat. Comput. Simul. 85, 1283 (2015) [CrossRef] [Google Scholar]
  44. B. Bettonvil, J.P. Kleijnen, Eur. J. Oper. Res. 96, 180 (1997) [CrossRef] [Google Scholar]
  45. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, T. Andres, J. Cariboni, D. Gatelli, M. Saisana, Global Sensitivity Analysis: The Primer (Wiley, New York, 2008) [Google Scholar]
  46. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (Wiley, New York, 2004) [Google Scholar]
  47. T. Homma, A. Saltelli, Reliab. Eng. Syst. Saf. 52, 1 (1996) [CrossRef] [Google Scholar]
  48. G. McRae, J. Tilden, J. Seinfeld, Comput. Chem. Eng. 6, 15 (1982) [CrossRef] [Google Scholar]
  49. A. Saltelli, R. Bolado, Comput. Stat. Data Anal. 26, 445 (1998) [CrossRef] [Google Scholar]
  50. A. Saltelli, Comput. Phys. Commun. 145, 280 (2002) [CrossRef] [Google Scholar]
  51. H. Monod, C. Naud, D. Makowski, Uncertainty and sensitivity analysis for crop models, in Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, edited by D. Wallach, D. Makowski, J.W. Jones (Elsevier, Amsterdam, 2006) [Google Scholar]
  52. J.-M. Martinez, Analyse de sensibilité globale par décomposition de la variance, Technical Report, GdR Ondes et Mascot Num, institut Henri Poincaré, 2011 [Google Scholar]
  53. R. Iman, M. Shortencarier, J. Johnson, FORTRAN 77 program and users guide for the calculation of partial correlation and standardized regression coefficients, Sandia National Laboratories, 1985 [Google Scholar]
  54. S. Tarantola, D. Gatelli, T. Mara, Reliab. Eng. Syst. Saf. 91, 717 (2006) [CrossRef] [Google Scholar]
  55. J.-Y. Tissot, C. Prieur, Reliab. Eng. Syst. Saf. 107, 205 (2012) [CrossRef] [Google Scholar]
  56. M.D. McKay, J.D. Morrison, S.C. Upton et al., Comput. Phys. Commun. 117, 44 (1999) [CrossRef] [Google Scholar]
  57. T. Alex Mara, O. Rakoto Joseph, J. Stat. Comput. Simul. 78, 167 (2008) [CrossRef] [Google Scholar]
  58. A.B. Owen, SIAM/ASA J. Uncertain. Quantif. 2, 245 (2014) [Google Scholar]
  59. P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa, B. Iooss, J. Stat. Comput. Simul. 85, 1200 (2015) [CrossRef] [Google Scholar]
  60. D.R. Jones, M. Schonlau, W.J. Welch, J. Glob. Optim. 13, 455 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  61. X. Zhang, Y. Tian, Y. Jin, IEEE Trans. Evol. Comput. 19, 761 (2015) [CrossRef] [Google Scholar]
  62. E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, in International Conference on Parallel Problem Solving from Nature (Springer, Heidelberg, 2004), pp. 832–842 [Google Scholar]
  63. Q. Zhang, H. Li, IEEE Trans. Evol. Comput. 11, 712 (2007) [CrossRef] [Google Scholar]
  64. U. Drepper, What Every Programmer Should Know About Memory (2007) [Google Scholar]
  65. M.J. Bayarri, J.O. Berger, R. Paulo, J. Sacks, J.A. Cafeo, J. Cavendish, C.-H. Lin, J. Tu, Technometrics 49, 138 (2007) [CrossRef] [Google Scholar]
  66. M.C. Kennedy, A. O’Hagan, J. R. Stat. Soc. 63, 425 (2001) [Google Scholar]
  67. F. Bachoc, G. Bois, J. Garnier, J.-M. Martinez, Nucl. Sci. Eng. 176, 81 (2014) [CrossRef] [Google Scholar]
  68. G. Casella, E.I. George, Am. Stat. 46, 167 (1992) [Google Scholar]
  69. S. Chib, E. Greenberg, Am. Stat. 49, 327 (1995) [Google Scholar]
  70. Y.-G. Zhao, T. Ono, Struct. Saf. 21, 95 (1999) [CrossRef] [Google Scholar]
  71. A.M. Hasofer, N.C. Lind, J. Eng. Mech. Div. 100, 111 (1974) [Google Scholar]
  72. S.-K. Au, J.L. Beck, Probab. Eng. Mech. 16, 263 (2001) [CrossRef] [MathSciNet] [Google Scholar]
  73. X. Huang, J. Chen, H. Zhu, Struct. Saf. 59, 86 (2016) [CrossRef] [Google Scholar]
  74. A.N. Kolmogorov, Giornale dell'Istituto Italiano degli Attuari 4, 83 (1933) [Google Scholar]
  75. T.W. Anderson, D.A. Darling, Ann. Math. Stat. 23, 193 (1952) [CrossRef] [Google Scholar]
  76. T.W. Anderson, Ann. Math. Stat. 33, 1148 (1962) [CrossRef] [Google Scholar]
  77. S. Nanty, C. Helbert, A. Marrel, N. Pérot, C. Prieur, Comput. Stat. 32, 559 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.