Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, January 2019
Article Number 5
Number of page(s) 12
DOI https://doi.org/10.1051/epjn/2019001
Published online 28 February 2019
  1. EC (European Commission), Strategic Energy Technology Plan (SET-Plan), 2015. Available from: http://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-energy-technology-plan [Google Scholar]
  2. EUROPAIRS, FP7 End User Requirement for Process Heat Applications With Innovative Reactors for Sustainable Energy Supply (EUROPAIRS), 2009. Available from: http://cordis.europa.eu/project/rcn/94416_en.html [Google Scholar]
  3. IAEA (International Atomic Energy Agency), Desalination Thermodynamic Optimization Program (DE-TOP), 2016. Available from: https://www.iaea.org/NuclearPower/NEA_Desalination/index.html [Google Scholar]
  4. NC2I, Nuclear Cogeneration Industrial Intiative (NC2i), 2015. Available from: http://www.snetp.eu/nc2i/ [Google Scholar]
  5. NEA (Nuclear Energy Agency), Ad hoc Expert Group of the Nuclear Energy Agency on the Role and Economics of Nuclear Co generation in a Low carbon Energy Future (COGEN 2015), 2015. Available from: http://www.oecd-nea.org/ndd/groups/cogen.html [Google Scholar]
  6. Ministère de l’environnement, de l'énergie et de la mer (French Ministry of Environment, Energy and Seas), Loi relative à la transition énergétique pour la croissance verte (TECV) (2015) (in French). https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000031044385&categorieLien=id [Google Scholar]
  7. C. Cany, C. Mansilla, P. da Costa, G. Mathonnière, T. Duquesnoy, A. Baschwitz, Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix, Energy Policy 95 , 135 (2016) [CrossRef] [Google Scholar]
  8. W.-C. Wang, Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha, Renew. Energy 95 , 63 (2016) [CrossRef] [Google Scholar]
  9. F. Jasserand, J.-G. Lavergne, Initial economic appraisal of nuclear district heating in France, EPJ Nuclear Sci. Technol. 2 , 39 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Leurent, P. Da Costa, M. Rämä, U. Persson, F. Jasserand, Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries, Energy 149 , 454 (2018) [CrossRef] [Google Scholar]
  11. M. Leurent, P. Da Costa, F. Jasserand, M. Rämä, U. Persson, Cost and climate savings through nuclear district heating in a French urban area, Energy Policy, in press [Google Scholar]
  12. H. Safa, Heat recovery from nuclear power plants, Int. J. Elec. Power Energy Syst. 42 , 553 (2012) [CrossRef] [Google Scholar]
  13. M. Leurent, P. Da Costa, S. Sylvestre, M. Berthélémy, Feasibility assessment of the use of nuclear plant-sourced steam for French factories considering spatial configuration, J. Clean. Prod. 189 , 529 (2018) [CrossRef] [Google Scholar]
  14. M. Leurent, F. Jasserand, G. Locatelli, J. Palm, M. Rämä, A. Trianni, Driving forces and obstacles to nuclear cogeneration in Europe: lessons learnt from Finland, Energy Policy 107 , 138 (2017) [CrossRef] [Google Scholar]
  15. R.E. Bush, C.S.E. Bale, P.G. Taylor, Realising local government visions for developing district heating: experiences from a learning country, Energy Policy 98 , 84 (2016) [CrossRef] [Google Scholar]
  16. J. Webb, Improvising innovation in UK urban district heating: the convergence of social and environmental agendas in Aberdeen, Energy Policy 78 , 265 (2015) [CrossRef] [Google Scholar]
  17. J. Barrie, G. Zawdie, E. João, Leveraging triple helix and system intermediaries to enhance effectiveness of protected spaces and strategic niche management for transitioning to circular economy, Int. J. Technol. Manage. Sustain. Dev. 16 , 25 (2017) [CrossRef] [Google Scholar]
  18. J. Schot, F.W. Geels, Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy, Technol. Anal. Strateg. Manage. 20 , 537 (2008) [CrossRef] [Google Scholar]
  19. D. Hawkey, J. Webb, Multi-level governance of socio-technical innovation: the case of district heating in the UK, in Contribution to the Jean Monnet International Workshop, Copenhagen Business School, 2012 [Google Scholar]
  20. F.W. Geels, Processes and patterns in transitions and system innovations: refining the co-evolutionary multi-level perspective, Technol. Forecast. Soc. Change 72 , 681 (2005) [CrossRef] [Google Scholar]
  21. A. Smith, J.-P. Voß, J. Grin, Innovation studies and sustainability transitions: the allure of the multi-level perspective and its challenges, Res. Policy 39 , 435 (2010) [CrossRef] [Google Scholar]
  22. L.-B. Fischer, J. Newig, Importance of actors and agency in sustainability transitions: a systematic exploration of the literature, Sustainability 8 , 476 (2016) [CrossRef] [Google Scholar]
  23. P. Kivimaa, F. Kern, Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions, Res. Policy 45 , 205 (2016) [CrossRef] [Google Scholar]
  24. F. Berkes, H. Ross, Panarchy and community resilience: Sustainability science and policy implications, Environ. Sci. Policy 61 , 185 (2016) [CrossRef] [Google Scholar]
  25. B. Walrave, M. Talmar, K.S. Podoynitsyna, A.G.L. Romme, G.P.J. Verbong, A multi-level perspective on innovation ecosystems for path-breaking innovation, Technol. Forecast. Soc. Change 136, 103 (2017) [Google Scholar]
  26. M.H. Benson, A.S. Garmestani, Embracing panarchy, building resilience and integrating adaptive management through a rebirth of the National Environmental Policy Act, J. Environ. Manage. 92 , 1420 (2011) [CrossRef] [Google Scholar]
  27. D. Loorbach, J. Rotmans, The practice of transition management: examples and lessons from four distinct cases, Futures 42 , 237 (2010) [CrossRef] [Google Scholar]
  28. J.M. Wittmayer, F. Avelino, F. van Steenbergen, D. Loorbach, Actor roles in transition: Insights from sociological perspectives, Environ. Innov. Soc. Transit. 24 , 45 (2017) [CrossRef] [Google Scholar]
  29. F. Sengers, A.J. Wieczorek, R. Raven, Experimenting for sustain- ability transitions: a systematic literature review, Technol. Forecast. Soc. Change, DOI: 10.1016/j.techfore.2016.08.031 [Google Scholar]
  30. S.E. Kalafatis, A. Grace, E. Gibbons, Making climate science accessible in Toledo: the linked boundary chain approach, Clim. Risk Manag. 9 , 30 (2015) [CrossRef] [Google Scholar]
  31. C. Pahl-Wostl, The role of institutions, actors and social networks in societal change, in Water Governance in the Face of Global Change, Water Governance − Concepts, Methods, and Practice (Springer, Cham, 2015), pp. 51−83 [CrossRef] [Google Scholar]
  32. T. Gliedt, C.E. Hoicka, N. Jackson, Innovation intermediaries accelerating environmental sustainability transitions, J. Clean. Prod. 174 , 1247 (2018) [CrossRef] [Google Scholar]
  33. J. Howells, Intermediation and the role of intermediaries in innovation, Res. Policy 35 , 715 (2006) [CrossRef] [Google Scholar]
  34. J. Mattes, A. Huber, J. Koehrsen, Energy transitions in small-scale regions − what we can learn from a regional innovation systems perspective, Energy Policy 78 , 255 (2015) [CrossRef] [Google Scholar]
  35. E. Küçüksayraç, D. Keskin, H. Brezet, Intermediaries and innovation support in the design for sustainability field: cases from the Netherlands, Turkey and the United Kingdom, J. Clean. Prod. 101 , 38 (2015) [CrossRef] [Google Scholar]
  36. C.S. Hayter, A.N. Link, On the economic impact of university proof of concept centers, J. Technol. Transfer 40 , 178 (2015) [CrossRef] [Google Scholar]
  37. P. Kivimaa, W. Boon, R. Antikainen, Commercialising university inventions for sustainability—a case study of (non-)intermediating “cleantech” at Aalto University, Sci. Public Policy 44 , 631 (2017) [Google Scholar]
  38. L. Kompella, E-Governance systems as socio-technical transitions using multi-level perspective with case studies, Technol. Forecast. Soc. Change 123 , 80 (2017) [CrossRef] [Google Scholar]
  39. L. Levidow, P. Upham, Linking the multi-level perspective with social representations theory: gasifiers as a niche innovation reinforcing the energy-from-waste (EfW) regime, Technol. Forecast. Soc. Change 120, 1 (2017) [CrossRef] [Google Scholar]
  40. B. van Bree, G.P.J. Verbong, G.J. Kramer, A multi-level perspective on the introduction of hydrogen and battery-electric vehicles, Technol. Forecast. Soc. Change 77 , 529 (2010) [CrossRef] [Google Scholar]
  41. R.E. Bush, C.S.E. Bale, M. Powell, A. Gouldson, P.G. Taylor, W.F. Gale, The role of intermediaries in low carbon transitions − Empowering innovations to unlock district heating in the UK, J. Clean. Prod. 148 , 137 (2017) [CrossRef] [Google Scholar]
  42. A. Kenis, F. Bono, E. Mathijs, Unravelling the (post-)political in transition management: interrogating pathways towards sustainable change, J. Environ. Policy Plann. 18 , 568 (2016) [CrossRef] [Google Scholar]
  43. F. Kern, Using the multi-level perspective on socio-technical transitions to assess innovation policy, Technol. Forecast. Soc. Change 79 , 298 (2012) [CrossRef] [Google Scholar]
  44. J.H. Sieg, M.W. Wallin, G. von Krogh, Managerial Challenges in Open Innovation: A Study of Innovation Intermediation in the Chemical Industry (SSRN Scholarly Paper No. ID 1602201), Social Science Research Network, Rochester, NY, 2010 [Google Scholar]
  45. L. Klerkx, C. Leeuwis, Balancing multiple interests: Embedding innovation intermediation in the agricultural knowledge infrastructure, Technovation 28 , 364 (2008) [CrossRef] [Google Scholar]
  46. IAEA (International Atomic Energy Agency), Market Potential for Non-electric Applications of Nuclear Energy, STI/DOC/010/410, 2003 [Google Scholar]
  47. M. Agogué, E. Berthet, T. Fredberg, P.L. Masson, B. Segrestin, M. Stoetzel, M. Wiener, A. Yström, Explicating the role of innovation intermediaries in the “unknown”: a contingency approach, J. Strateg. Manag. 10 , 19 (2017) [CrossRef] [Google Scholar]
  48. T. Inkinen, K. Suorsa, Intermediaries in regional innovation systems: high-technology enterprise survey from Northern Finland, Eur. Plan. Stud. 18 , 169 (2010) [CrossRef] [Google Scholar]
  49. A. Bergek, S. Jacobsson, B. Carlsson, S. Lindmark, A. Rickne, Analyzing the functional dynamics of technological innovation systems: a scheme of analysis, Res. Policy 37 , 407 (2008) [CrossRef] [Google Scholar]
  50. M.P. Hekkert, R.A.A. Suurs, S.O. Negro, S. Kuhlmann, R.E.H.M. Smits, Functions of innovation systems: A new approach for analysing technological change, Technol. Forecast. Soc. Change 74 , 413 (2007) [CrossRef] [Google Scholar]
  51. H. van Lente, M. Hekkert, R. Smits, B. van Waveren, Roles of systemic intermediaries in transition processes, Int. J. Innov. Manag. 07, 247 (2003) [CrossRef] [Google Scholar]
  52. A. Hatchuel, P.L. Masson, B. Weil, Teaching innovative design reasoning: how concept-knowledge theory can help overcome fixation effects, Artif. Intell. Eng. Des. Anal. Manuf. 25 , 77 (2011) [CrossRef] [Google Scholar]
  53. S.E. Fawcett, S.L. Jones, A.M. Fawcett, Supply chain trust: the catalyst for collaborative innovation, Bus. Horiz. 55 , 163 (2012) [CrossRef] [Google Scholar]
  54. F. Geels, R. Raven, Non-linearity and expectations in niche-development trajectories: ups and downs in Dutch biogas development (1973–2003), Technol. Anal. Strateg. Manag. 18 , 375 (2006) [CrossRef] [Google Scholar]
  55. M. Hodson, S. Marvin, Can cities shape socio-technical transitions and how would we know if they were? Res. Policy 39, 477 (2010) [CrossRef] [Google Scholar]
  56. K. Matschoss, E. Heiskanen, Making it experimental in several ways: the work of intermediaries in raising the ambition level in local climate initiatives, J. Clean. Prod. 169 , 85 (2017) [CrossRef] [Google Scholar]
  57. J. Klewitz, A. Zeyen, E.G. Hansen, Intermediaries driving eco-innovation in SMEs: a qualitative investigation, Eur. J. Innov. Manag. 15 , 442 (2012) [CrossRef] [Google Scholar]
  58. NC2I, Experience Feedback from Nuclear Cogeneration. Contribution of C. Auriault, M.A. Fütterer, O. Baudrand to the NC2I Conference, CDMA Brussels, 2015 [Google Scholar]
  59. Decentralized energy, Chinese firm to develop nuclear district heating plant (2017). http://www.decentralized-energy.com/articles/2017/12/chinese-firm-to-develop-nuclear-district-heating-plant.html [Google Scholar]
  60. M. Leurent, P. Da Costa, S. Sylvestre, M. Berthélémy, Feasibility assessment of the use of nuclear plant-sourced steam for French factories, taking spatial configuration into consideration, J. Clean. Prod. 189, 529 (2018) [Google Scholar]
  61. J. Sanderson, Risk, uncertainty and governance in megaprojects: a critical discussion of alternative explanations, Int. J. Proj. Manag. 30 , 432 (2012) [CrossRef] [Google Scholar]
  62. A. Dalmasso, Le projet Thermos (1975-1981) ou l'échec de l'atome au coin du feu, Colloque Nucléaire et développement régional, Tours, CEHMVI, Fondation EDF, 17–18 Décembre, 2008 (in French) [Google Scholar]
  63. NEA (Nuclear Energy Agency), On the Role and Economics of Nuclear Cogeneration in a Low Carbon Energy Future, 2018, in press [Google Scholar]
  64. P. Hirsch, K. Duzinkiewicz, M. Grochowski, R. Piotrowski, Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems, Appl. Energy 182 , 164 (2016) [CrossRef] [Google Scholar]
  65. G. Locatelli, S. Boarin, F. Pellegrino, M.E. Ricotti, Load following with small modular reactors (SMR): a real options analysis, Energy 80 , 41 (2015) [CrossRef] [Google Scholar]
  66. SNCU (French National Union for District Heating), Enquête annuelle sur les réseaux de chaleur et de froid. Rapport 2017. Edition nationale (2017) (in French). http://www.sncu.fr/Actualite-Agenda/Actualites/Enquete-nationale-sur-les-reseaux-de-chaleur-et-de-froid-Edition-2017-Chiffres-2016 [Google Scholar]
  67. I. Puikkonen, Cooperative Mankala-Companies − the acceptability of the company form in EC competition law, Helsinki Law Rev. 1 , 139 (2010) [Google Scholar]
  68. A. Colmenar-Santos, E. Rosales-Asensio, D. Borge-Diez, F. Mur-Pérez, Cogeneration and district heating networks: measures to remove institutional and financial barriers that restrict their joint use in the EU-28, Energy 85 , 403 (2015) [CrossRef] [Google Scholar]
  69. EC (European Commission), Efficient district heating and cooling systems in the EU. Case studies analysis, replicable key success factors and potential policy implications, 2016. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104437/study%20on%20efficient%20dhc%20systems%20in%20the%20eu%20-dec2016_final%20-%20public%20report6.pdf [Google Scholar]
  70. F.M. Santos, K.M. Eisenhardt, Constructing markets and shaping boundaries: entrepreneurial power in Nascent fields, Acad. Manage. J. 52 , 643 (2009) [CrossRef] [Google Scholar]
  71. B.K. Sovacool, C.J. Cooper, The Governance of Energy Megaprojects: Politics, Hubris and Energy Security (Edward Elgar, Cheltenham, 2013) [CrossRef] [Google Scholar]
  72. B.K. Sovacool, What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda, Energy Res. Soc. Sci. 1 , 1 (2014) [CrossRef] [Google Scholar]
  73. European Parliament, Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, 2012 [Google Scholar]
  74. Ministère de l'écologie, du développement durable et de l'énergie (French Ministry of Ecology, Sustainable development and Energy), 2014. Ministère de l#XPS#rsquo;écologie, du développement durable et de l'énergie, 2014. Application de l'article 14.5 de la directive 202/27/EU sur la valorisation de la chaleur fatale industrielle via des réseaux de chaleur. Décret n° 2014-1363 du 14 Novembre, 2014 [Google Scholar]
  75. ADEME (French Agency for Environment and Energy Supervision), 13ième Rencontres des réseaux de chaleur (13th National DH Meeting), Round Table of the 12/12, Presentation by Rémi Chabrillat “Factor 5 for renewable and excess heat sources: Which means for which objectives?”, 2017 (in French) [Google Scholar]
  76. Assemblée Nationale (French national assembly), Loi n° 2015–992 du17 aoÛt 2015 Relative à la transition énergétique pour la croissance verte, 2015–2992 (2015). http://www.legifrance.gouv.fr/affichTexte.do?cidTexte¼JORFTEXT000031044385&categorieLien¼id [Google Scholar]
  77. AMORCE (French district heating association), 9 propositions du comité national des acteurs des réseaux de chaleur (2017) (in French). http://www.amorce.asso.fr/fr/espace-adherents/publications/rdc/parties-prenantes/9-propositions-du-comite-national-des-acteurs-des-reseaux-de-chaleur/ [Google Scholar]
  78. IPCC (Intergovernmental Panel on Climate Change), Guidelines for National Greenhouse Gas Inventories, Energy (2006), Vol. 2 [Google Scholar]
  79. D. Charlier, Energy efficiency investments in the context of split incentives among French households, Energy Policy 87 , 465 (2015) [CrossRef] [Google Scholar]
  80. Assemblée Nationale, LOI n° 2017-1837 du 30 décembre 2017 de finances pour 2018 (2017) (in French). https://www.legifrance.gouv.fr/eli/loi/2017/12/30/CPAX1723900L/jo/texte/# [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.