Open Access
EPJ Nuclear Sci. Technol.
Volume 3, 2017
Article Number 34
Number of page(s) 8
Published online 12 December 2017
  1. R.B. Rebak, Nuclear application of oxide dispersion strengthened and nano-featured alloys: an introduction, JOM 66, 2424 (2014) [CrossRef] [Google Scholar]
  2. Nuclear energy institute (NEI), (retrieved: 2017/19/01) [Google Scholar]
  3. US nuclear regulatory commission, Fact sheet on nuclear reactor risk, [Google Scholar]
  4. N. Sridhar, Risk assessment of corrodible systems-an overview, Mater. Perform. 50, 32 (2011) [Google Scholar]
  5. IAEA, International Atomic Energy Agency, in Risk management: a tool for improving nuclear power plant performance, TECDOC-1209, Vienna, (2001) [Google Scholar]
  6. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448, 374 (2014) [CrossRef] [Google Scholar]
  7. R.B. Rebak, Alloy selection for accident tolerant fuel cladding in commercial light water reactors, Metall. Mater. Trans. E 2E, 197 (2015) [Google Scholar]
  8. R.B. Rebak, K.A. Terrani, W.P. Gassmann, J.B. Williams, K.L. Ledford, Improving nuclear power plant safety with FeCrAl alloy fuel cladding materials research society fall meeting, MRS Adv. 2, 1217 (2017) [CrossRef] [Google Scholar]
  9. S.M. Bragg-Sitton, M. Todosow, R. Montgomery, C.R. Stanek, R. Montgomery, W.J. Carmack, Metrics for the technical performance evaluation of light water reactor accident tolerant fuel, Nucl. Technol. 195, 111 (2016) [CrossRef] [Google Scholar]
  10. K.R. Robb, Analysis of the FeCrAl accident tolerant fuel concept benefits during BWR station blackout accidents, in Proc. of NURETH-16, Chicago, IL, USA, 2015 [Google Scholar]
  11. EPRI, Evaluation of expected behavior of LWR stainless steel-clad fuel in long-term dry storage (Electric Power Research Institute, Palo Alto, CA, 1996) [Google Scholar]
  12. P.M. Ahmedabadi, G.S. Was, Stress corrosion cracking of ferritic-martensitic steels in simulated boiling water reactor environment, Corrosion 72, 66 (2016) [Google Scholar]
  13. R.B. Rebak, N.R. Brown, K.A. Terrani, Assessment of advanced steels as accident tolerant fuel cladding for commercial light water reactors, in Paper 227, 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Ottawa, Ontario, Canada (Canadian Nuclear Society, Toronto, 2015) [Google Scholar]
  14. D.D. Ellis, R.B. Rebak, Passivation characteristics of ferritic stainless materials in simulated reactor environments, in Paper C2016-7452, Corrosion 2016 (NACE International, Houston, TX, 2016), p. 7452 [Google Scholar]
  15. R.B. Rebak, M. Larsen, Y.-J. Kim, Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments, Corr. Rev. 35, 177 (2017) [Google Scholar]
  16. T. Terachi, K. Arioka, Characterization of oxide film behaviors on 316 stainless steels in high-temperature water-influence of hydrogen and oxygen considerations for initiation of SCC, in Paper 06608, Corrosion 2006 Conference and Exposition (NACE International, Houston, TX, 2006) [Google Scholar]
  17. M. Da Cunha Belo, M. Walls, N.E. Hakiki, J. Corset, E. Picquenard, G. Sagon, D. Noel, Composition, Structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment, Corros. Sci. 40, 447–463 (1998) [CrossRef] [Google Scholar]
  18. Y.-J. Kim, F. Wagenbaugh, T.B. Jurewicz, R.J. Blair, R.B. Rebak, Environmental behavior of light water reactor accident tolerant candidate cladding materials under design conditions, in Paper C2015-5–817, Corrosion 2015 (NACE International, Houston, TX, 2015) [Google Scholar]
  19. K. Sakamoto, M. Hirai, S. Ukai, A. Kimura, A. Yamaji, K. Kusagaya, T. Kondo, S. Yamashita, Overview of japanese development of accident tolerant FeCrAl-ODS fuel claddings for BWRs, in WRFPM Conference, Jeju Island (2017) [Google Scholar]
  20. F. Nagase, K. Sakamoto, S. Yamashita, Performance degradation of candidate accident-tolerant cladding under corrosive environment, Corros. Rev. 35, 129 (2017) [CrossRef] [Google Scholar]
  21. R.E. Stachowski, R. Fawcett, R.B. Rebak, W.P. Gassmann, J.B. Williams, K.A. Terrani, Progress of GE Development of accident tolerant fuel FeCrAl cladding, in Paper A-287, WRFPM 2017 Conference in Jeju Island, Republic of Korea (2017) [Google Scholar]
  22. N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors, Ann. Nucl. Energy 75, 703 (2015) [CrossRef] [Google Scholar]
  23. EPRI, An Evaluation of Stainless Steel Cladding for use in Current Design LWRS, Report NP-2642, Section 4 Tritium Release from Stainless steels, 1982 ( [Google Scholar]
  24. R.B. Rebak, Y.-J. Kim, Hydrogen diffusion in FeCrAl alloys for light water reactors cladding applications, in Paper PVP2016-63164, 2016 ASME PVP Conference, MF-7 Materials and Technologies for Nuclear Power Plants Vancouver, BC (2016) [Google Scholar]
  25. D. Levchuk, H. Bolt, M. Döbeli, S. Eggenberger, B. Widrig, J. Ramm, Al-Cr-O thin films as an efficient hydrogen barrier, Surf. Coat. Technol. 202, 5043 (2008) [CrossRef] [Google Scholar]
  26. R.A. Strehlow, H.C. Savage, The permeation of hydrogen isotopes through structural metals at low pressures and through metals with oxide film barriers, Nucl. Technol. 22, 127 (1974) [CrossRef] [Google Scholar]
  27. E.H. Van Deventer, V.A. Maroni, Hydrogen permeation characteristics of some Fe-Cr-Al alloys, J. Nucl. Mater. 113, 65 (1983) [CrossRef] [Google Scholar]
  28. N. Waeckel, Using E-ATF in nuclear power plants: utility perspectives, in Paper IA-007, 2017, Jeju Island, Korea (2017) [Google Scholar]
  29. R.B. Rebak, J. Met., in print [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.