Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 3, 2017
Article Number 23
Number of page(s) 13
DOI https://doi.org/10.1051/epjn/2017017
Published online 10 July 2017
  1. J. Attiogbe, E. Aubonnet, L. De Maquille, P. De Moura, Y. Desnoyers, D. Dubot, B. Feret, P. Fichet, G. Granier, B. Iooss, J.-G. Nokhamzon, C. Ollivier Dehaye, L. Pillette-Cousin, A. Savary, Soil radiological characterisation methodology. CEA-R-6386 (Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA Marcoule Center, Nuclear Energy Division, Radiochemistry and Processes Department, Analytical Methods Committee (CETAMA), France, 2014) [Google Scholar]
  2. P. Flynn, La gestion de la pandémie H1N1 : nécessité de plus de transparence, in AS/Soc 12 (Council of Europe, 2010) [Google Scholar]
  3. N. Pérot, B. Iooss, Quelques problématiques d'échantillonnage statistique pour le démantèlement d'installations nucléaires, in Conférence λμ16, Avignon, France, October 2008 (2008) [Google Scholar]
  4. B. Poncet, L. Petit, Method to assess the radionuclide inventory of irradiated graphite waste from gas-cooled reactors, J. Radioanal. Nucl. Chem. 298, 941 (2013) [CrossRef] [Google Scholar]
  5. B. Zaffora, M. Magistris, G. Saporta, F. La Torre, Statistical sampling applied to the radiological characterization of historical waste, EPJ Nuclear Sci. Technol. 2, 11 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  6. N. Jeannée, Y. Desnoyers, F. Lamadie, B. Iooss, Geostatistical sampling optimization of contaminated premises, in DEM – Decommissioning challenges: an industrial reality? Avignon, France, 2008 (2008) [Google Scholar]
  7. Y. Desnoyers, J.-P. Chilès, D. Dubot, N. Jeannée, J.-M. Idasiak, Geostatistics for radiological evaluation: study of structuring of extreme values, Stoch. Environ. Res. Risk Assess. 25, 1031 (2011) [CrossRef] [Google Scholar]
  8. A. Bechler, T. Romary, N. Jeannée, Y. Desnoyers, Geostatistical sampling optimization of contaminated facilities, Stoch. Environ. Res. Risk Assess. 27, 1967 (2013) [CrossRef] [Google Scholar]
  9. A.R. Brazzale, A.C. Davison, N. Reid, Applied asymptotics – case studies in small-sample statistics (Cambridge University Press, 2007) [CrossRef] [Google Scholar]
  10. P.-C. Pupion, G. Pupion, Méthodes statistiques applicables aux petits échantillons (Hermann, 2010) [Google Scholar]
  11. E.G. Schilling, D.V. Neubauer, Acceptance sampling in quality control, 2nd ed. (CRC Press, 2009) [Google Scholar]
  12. R.B. D'Agostino, M.A. Stephens, eds., Goodness-of-fit techniques (Dekker, 1986) [Google Scholar]
  13. G.J. Hahn, W.Q. Meeker, Statistical intervals. A guide for practitioners (Wiley-Interscience, 1991) [CrossRef] [Google Scholar]
  14. G. Blatman, B. Iooss, Confidence bounds on risk assessments − application to radiological contamination, in Proceedings of the PSAM11 ESREL 2012 Conference, Helsinki, Finland, June 2012 (2012), pp. 1223–1232 [Google Scholar]
  15. R. Nelson, Probability, stochastic processes, and queuing theory: the mathematics of computer performance modeling (Springer, 1995) [CrossRef] [Google Scholar]
  16. G. Woo, Confidence bounds on risk assessments for underground nuclear waste repositories, Terra Res. 1, 79 (1988) [Google Scholar]
  17. L. Guttman, A distribution-free confidence interval for the mean, Ann. Math. Stat. 19, 410 (1948) [CrossRef] [Google Scholar]
  18. F. Pukelsheim, The three sigma rule, Am. Stat. 48, 88 (1994) [Google Scholar]
  19. D.F. Vysochanskii, Y.I. Petunin, Justification of the 3a rule for unimodal distribution, Theor. Probab. Math. Stat. 21, 25 (1980) [Google Scholar]
  20. S. Dharmadhikari, K. Joagdev, Unimodality, convexity, and applications (Academic Press, Inc., 1988) [Google Scholar]
  21. W.T. Nutt, G.B. Wallis, Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties, Reliab. Eng. Syst. Saf. 83, 57 (2004) [CrossRef] [Google Scholar]
  22. D.B. Owen, Factors for one-sided tolerance limits and for variables sampling plans, SCR-607 (Sandia Corporation Monograph, 1963) [CrossRef] [Google Scholar]
  23. G.E.P. Box, D.R. Cox, An analysis of transformations, J. R. Stat. Soc. 26, 211 (1964) [Google Scholar]
  24. M. Lemaire, Structural reliability (Wiley, 2009) [CrossRef] [Google Scholar]
  25. I.R. Savage, Probability inequalities of the Tchebycheff type, J. Res. Natl. Bur. Stand. B: Math. Math. Phys. 65B, 211 (1961) [CrossRef] [Google Scholar]
  26. S. Boucheron, G. Lugosi, S. Massart, Concentration inequalities: a nonasymptotic theory of independence (OUP, Oxford, 2013) [CrossRef] [Google Scholar]
  27. B. Meidell, Sur un problème du calcul des probabilités et les statistiques mathématiques, C. R. Acad. Sci. 175, 806 (1922) [Google Scholar]
  28. D. Van Dantzig, Une nouvelle généralisation de l'inégalité de Bienaymé (extrait d'une lettre à M.M. Fréchet), Ann. Inst. Henri Poincaré 12, 31 (1951), Available at: http://archive.numdam.org [Google Scholar]
  29. B. Efron, R.J. Tibshirani, An introduction to the bootstrap (Chapman & Hall, 1993) [CrossRef] [Google Scholar]
  30. H.A. David, H.N. Nagaraja, Order statistics, 3rd ed. (Wiley, New York, 2003) [CrossRef] [Google Scholar]
  31. C. Cannamela, J. Garnier, B. Iooss, Controlled stratification for quantile estimation, Ann. Appl. Stat. 2, 1554 (2008) [CrossRef] [Google Scholar]
  32. S.S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12, 91 (1941) [CrossRef] [Google Scholar]
  33. E. Hofer, Probabilistische unsicherheitsanalyse von ergeb-nissen umfangreicher rechenmodelle, in GRS-A-2002 (1993) [Google Scholar]
  34. A. de Crécy, P. Bazin, H. Glaeser, T. Skorek, J. Joucla, P. Probst, K. Fujioka, B.D. Chung, D.Y. Oh, M. Kyncl, R. Pernica, J. Macek, R. Meca, R. Macian, F. D'Auria, A. Petruzzi, L. Batet, M. Perez, F. Reventos, Uncertainty and sensitivity analysis of the LOFT L2-5 test: results of the BEMUSE programme, Nucl. Eng. Des. 12, 3561 (2008) [CrossRef] [Google Scholar]
  35. E. Zio, F. Di Maio, Bootstrap and order statistics for quantifying thermal-hydraulic code uncertainties in the estimation of safety margins, Sci. Technol. Nucl. Install. 9, 340164 (2008) [Google Scholar]
  36. W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58, 13 (1963) [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.