Open Access
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 40
Number of page(s) 6
Published online 14 October 2016
  1. N. Akiyama, H. Sato, K. Naito, Y. Naoi, T. Katsuta, The Fukushima nuclear accident and crisis management-lessons for Japan–U.S. alliance cooperation (Sasakawa Peace Foundation, Tokyo, 2012) [Google Scholar]
  2. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448, 420 (2014) [CrossRef] [Google Scholar]
  3. B.E. Wilde, J.E. Weber, Intergranular stress-corrosion resistance of austenitic stainless steels in water/oxygen environment: accelerated test procedure, Br. Corros. J. 4, 42 (1969) [CrossRef] [Google Scholar]
  4. S.M. Stoller Corporation, An evaluation of stainless steel cladding for use in current design LWRs, NP-2642 (EPRI, New York, 1982) [Google Scholar]
  5. A. Abe, C. Giovedi, D.S. Gomes, A. Teixeira e Silva, Revisiting stainless steel as PWR fuel rod cladding after Fukushima Daiichi accident, J. Energy Power Eng. 8, 973 (2014) [Google Scholar]
  6. C.M. Allison et al., SCDAP/RELAP5/MOD3.1 code manual volume IV: MATPRO − a library of materials properties for light-water-reactor accident analysis, NUREG/CR-6150.EGG-2720, Washington, 1993 [Google Scholar]
  7. G. Was, S.M. Bruemmer, Effects of irradiation on intergranular stress corrosion cracking, J. Nucl. Mater. 216, 326 (1994) [CrossRef] [Google Scholar]
  8. K. Arioka, Effect of temperature, hydrogen and boric acid concentration on IGSCC susceptibility of annealed 316 stainless steel, in Contribution of materials investigation to the resolution of problems encountered in pressurized water reactors (Leibniz Information Centre for Science and Technology University Library, Hannover, 2002) [Google Scholar]
  9. T. Terachi et al., Corrosion behavior of stainless steels in simulated PWR primary water − effect of chromium content in alloys and dissolved hydrogen, J. Nucl. Sci. Technol. 45, 975 (2008) [CrossRef] [Google Scholar]
  10. P.D. Harvey, Engineering properties of steel (American Society for Metals, Materials Park, OH, 1982) [Google Scholar]
  11. M. Takeda et al., Physical properties of iron-oxide scales on Si-containing steels at high temperature, Mater. Trans. 50, 2242 (2009) [CrossRef] [Google Scholar]
  12. H.E. Boyer et al., Handbook, ASM metals (American Society for Metals, Materials Park, OH, 1985) [Google Scholar]
  13. B. Cox et al., Waterside corrosion of zirconium alloys in nuclear power plants, IAEA TECDOC, v. 996 (International Atomic Energy Agency, Vienna, 1998), p. 124 [Google Scholar]
  14. P.V. Uffelen et al., Analysis of reactor fuel rod behavior, in Handbook of nuclear engineering (Springer, US, 2010), p. 1519 [Google Scholar]
  15. F. Garzarolli, D. Jorde, R. Manzel, J.R. Politano, P.G. Smerd, Waterside corrosion of zircaloy-clad fuel rods in a PWR environment, in Zirconium in the nuclear industry (ASTM International, New York, 1982) [Google Scholar]
  16. R. Vandagriff, Practical guide to industrial boiler systems (CRC Press, New York, 2001) [Google Scholar]
  17. K.J. Geelhood, W.G. Luscher, C.E. Beyer, M.E. Flanagan, FRAPCON-3.4: a computer code for the calculation of steady-state thermal-mechanical behavior of oxide fuel rods for high burnup, NUREG/CR-7022 (U.S. NRC, Washington, 2011) [Google Scholar]
  18. D. Peckner, I.M. Bernstein, Handbook of stainless steels (McGraw-Hill, New York, 1977) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.