Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 25
Number of page(s) 9
DOI https://doi.org/10.1051/epjn/2016018
Published online 13 May 2016
  1. I. Aydin, J. Briscoe, Dimensional variation of die pressed ceramic green compacts, comparison of a FEM with experiment, J. Eur. Ceram. Soc. 17 , 1201 (1997) [CrossRef] [Google Scholar]
  2. P.R. Brewin, O. Coube, P. Doremus, J.H. Tweed, Modelling of powder die compaction, Springer Engineering Materials and Processes (Springer-Verlag, London, 2008), p. 57, §4.2.2, p. 59 §4.2.3 [Google Scholar]
  3. P. Pizette, C.L. Martin, G. Delette, P. Sornay, F. Sans, Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces, Powder Technol. 198 , 240 (2010) [CrossRef] [Google Scholar]
  4. P. Pizette, C.L. Martin, G. Delette et al., J. Eur. Ceram. Soc. 33 , 975 (2013) [CrossRef] [Google Scholar]
  5. G. Kerboul, Étude de l’endommagement des produits céramiques crus par émission acoustique, Thèse INSA Lyon, 1992 [Google Scholar]
  6. D.D. Zenger, H. Cai, Handbook of the common cracks in green P/M compacts (Powder Metallurgy Reserch Center, WPI, 1997) [Google Scholar]
  7. P. Jonsen, A. Haggblad, Modelling and numerical investigation of the residual stress in a green metal powder body, Powder Technol. 155 , 196 (2005) [CrossRef] [Google Scholar]
  8. G. Delette, P. Sornay, J. Blancher, A Finite Element modelling of the pressing of nuclear oxide powders to predict the shape of LWR fuel pellet after die compaction and sintering, in AIEA Technical Committee , Brussels, 20–24 October 2003 (2003) [Google Scholar]
  9. J.-P. Bayle, Minor actinide bearing blanket manufacturing press and associated material studies for compaction cycle optimization, in NuMat 2014 Nuclear Materials conference , 27–30 October 2014 Clearwater Beach, Florida (2014) [Google Scholar]
  10. J.-P. Bayle, Electromechanical press for nuclear compaction in hot cell (WNE, Paris, 2014) [Google Scholar]
  11. J.-P. Bayle, Minor actinide bearing blanket manufacturing press (Hotlab, Baden, 2014) [Google Scholar]
  12. J.-P. Bayle, WO2015/181121A1, Brevet CEA/Champalle, Presse pour mettre en forme des pastilles dans un environnement restreint et hostile et procédé d’assemblage de la presse [Google Scholar]
  13. J.-P. Bayle, Finite element modeling and experiments for shaping nuclear powder pellets, Procedia Chem. 7 , 444 (2012) [CrossRef] [Google Scholar]
  14. C. Dellis et al., PRECAD, A Computer-Assisted Design and Modelling Tool for Powder Precision Moulting, in HIP’96 Proceeding of the international conference on Hot Isostatic Pressing , 20–22 May 96 Andover, Massachusetts (1996) pp. 75–78 [Google Scholar]
  15. Abaqus® User manual, Vs 6.11 Analysis User's, Manual Volume III: Materials, section 22.3.1, 22.3.2, 22.3.4 [Google Scholar]
  16. Cast3 m® User manual, Modèle non linéaire, T. Charras, Edition 2011 [Google Scholar]
  17. J.-P. Bayle, Modelling of powder die compaction for press cycle optimization, in TopFuel 2015 , Sept. Zurich (2015) [Google Scholar]
  18. O. Gillia, Modélisation phénoménologique du comportement des matériaux frittants et simulation numérique du frittage industriel de carbure cémenté et d’alumine, Thèse INPG, 2000 [Google Scholar]
  19. F. Desnoyer, Mémento sur la notion de capabilité, TI, ag1775, versus 10/01/2004 [Google Scholar]
  20. E. Remy, J. Eur. Ceram. Soc. 32 , 3199 (2012) [CrossRef] [Google Scholar]
  21. P. Parant, Study and modelling of compaction of metal oxide microspheres into pellets (E-MRS, Warsaw, Poland, 2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.