Open Access
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 30
Number of page(s) 11
Published online 17 June 2016
  1. C. Cawthorne, J.E. Fulton, Nature 216, 515 (1967) [CrossRef] [Google Scholar]
  2. G.S. Was, Fundamentals of Radiation Materials Science (Springer, 2007), Chap. 8 [Google Scholar]
  3. P. Dubuisson, Core Structural Materials – feedback experience from Phénix Design Manufacturing and Irradiation behaviour of Fast Reactor Fuel, IAEA-TECDOC – CD – 1689, pp. 235–247, 2013 [Google Scholar]
  4. A. Renault et al., Correlation of radiation-induced changes in microstructure/microchemistry, density and thermos-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor, J. Nucl. Mater. 460, 72 (2015) [CrossRef] [Google Scholar]
  5. M. Le Flem, P. Gavoille, Advanced steel claddings for SFRS: feedback and challenges, in Final workshop GETMAT, 2013 (2013) [Google Scholar]
  6. E. Wakai, N. Hashimoto, Swelling of cold worked austenitic stainless steels irradiated in HFIR under spectrally tailored conditions, J. Nucl. Mater. 307, 352 (2002) [CrossRef] [Google Scholar]
  7. S. Hamada, M. Suzuki, Microstructural evolution in austenitic stainless steels irradiated to 57 dpa in HFIR, J. Nucl. Mater. 179, 515 (1991) [CrossRef] [Google Scholar]
  8. P. Dubuisson, A. Maillard, C. Delalande et al., The effect of phosphorus on the radiation induced microstructure of stabilized austenitic stainless steels, in 15th International Symposium on the Effects of Radiation on Materials, Nashville (1990) [Google Scholar]
  9. E. Lee, L. Mansur, Fe–15Ni–13Cr austenitic stainless steels for fission and fusion reactor applications. III. Phase stability during heavy ion irradiation, J. Nucl. Mater. 278, 20 (2000) [CrossRef] [Google Scholar]
  10. P. Mazias, Overview of microstructural evolution in neutron-irradiated austenitic stainless steels, J. Nucl. Mater. 205, 118 (1993) [CrossRef] [Google Scholar]
  11. J.L. Seran et al., Behaviour under neutron irradiation of the 15–15Ti and EM10 steels used as standard materials of the Phénix fuel subassembly, Effects of radiation on materials, in 15th International Symposium ASTM STP 1125, Philadelphia (1992), p. 1209 [Google Scholar]
  12. I. Neklyudov, V. Voyevodin, Radiation swelling of modified austenitic steels, Russ. Phys. J. 51, 400 (2008) [CrossRef] [Google Scholar]
  13. V. Voyevodin, I. Neklyudov, Microstructural evolution and radiation stability of steels and alloys, J. Nucl. Mater. 271, 290 (1999) [CrossRef] [Google Scholar]
  14. B. Raj, M. Vijayalakshmi, Radiation Damage of Structural Materials for Fast Reactor Fuel Assembly ( ICTP&IAEA, Trieste, 2009) [Google Scholar]
  15. J. Seran, L. Le Naour, P. Grosjean et al., Swelling of microstructure of neutron irradiated titanium modified type 316 stainless steel, in Effect of Radiation on Materials, 12th Int. Symp., Philadelphia, USA (1985), p. 233 [Google Scholar]
  16. L. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater. 216, 97 (1994) [CrossRef] [Google Scholar]
  17. C. Delalande, Influence du Phosphore sur le comportement hors et sous irradiation des aciers austénitiques multi stabilisés, Chapitre 3, PhD. Thesis, Paris, 1992 [Google Scholar]
  18. A. Padilha, R. Plaut, Annealing of cold-worked austenitic stainless steels, ISIJ Int. 43, 135 (2003) [CrossRef] [Google Scholar]
  19. S. Yang, J. Spruiell, Cold-worked state and annealing behavior of austenitic stainless steel, J. Mater. Sci. 17, 677 (1982) [CrossRef] [Google Scholar]
  20. R. Schramm, R. Reed, Stacking-fault energies of 7 commercial austenitic stainless-steels, J. Miner. Met. Mater. Soc. 7, 1345 (1975) [Google Scholar]
  21. V. Voronin, E. Valiev et al., Neutron diffraction analysis of Cr–Ni–Mo–Ti austenitic steel after cold plastic deformation and fast neutrons irradiation, J. Nucl. Mater. 459, 97 (2015) [CrossRef] [Google Scholar]
  22. M. Terada, R. Altobelli, Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970, J. Nucl. Mater. 358, 40 (2006) [Google Scholar]
  23. A. Padilha, G. Schanz, Ausscheidungsverhalten des titanstabilisierten austenitischen stahls 15% Q-15% Ni-1% Mo-Ti-B (DIN-werkstoff-nr. 1.4970), J. Nucl. Mater. 105, 77 (1982) [CrossRef] [Google Scholar]
  24. B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials ( Springer, Germany, 2002) [CrossRef] [Google Scholar]
  25. C. David et al., A study of the effect o titanium on the void swelling behaviour of D9 steels by ion beam simulation, J. Nucl. Mater. 383, 132 (2008) [CrossRef] [Google Scholar]
  26. J.S. Yang, Radiation-induced changes in microstructure, in 13th int. symp. ASTM STP 955 (1987), Vol. 1, p. 628 [Google Scholar]
  27. G.S. Was, R.S. Averback, Comprehensive Nuclear Materials, (Elsevier Ltd., 2012), Chapter 1.07 [Google Scholar]
  28. T. Allen, J. Cole, Swelling and radiation-induced segregation in austenitic alloys, J. Nucl. Mater. 342, 90 (2005) [CrossRef] [Google Scholar]
  29. F.A. Garner et al., Use of self-ion bombardment to study void swelling in advanced radiation-resistant alloys, in 17th Int. Symp. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, Ottawa, Canada (2015) [Google Scholar]
  30. A. Courcelle et al., in SMINS Workshop, Idaho Falls, USA (2013) [Google Scholar]
  31. T. Muroga, F. Garner, Microstructural investigation of swelling dependence on nickel content in fast neutron-irradiated Fe-Cr-Ni austenitic ternaries, J. Nucl. Mater. 179–181, 546 (1991) [CrossRef] [Google Scholar]
  32. O. Borodin et al., Synergistic effects of helium and hydrogen on self-ion-induced swelling of austenitic 18Cr10NiTi stainless steel, J. Nucl. Mater. 442, 817 (2013) [CrossRef] [Google Scholar]
  33. A. Kalchenko et al., Prediction of swelling of 18Cr10NiTi austenitic steel over a wide range of displacement rates, J. Nucl. Mater. 399, 114 (2010) [CrossRef] [Google Scholar]
  34. F.A. Garner, Irradiation performance of cladding and structural steels in liquid metal reactors, in Materials Science and Technology (VCH Publishers, New York, 1994), Vol. 10A: Nuclear Materials, Chap. 6, Part I [Google Scholar]
  35. F.A. Garner, Recent insights on the swelling and creep of irradiated austenitic alloys, J. Nucl. Mater. 123, 459 (1984) [CrossRef] [Google Scholar]
  36. H. Venker, K. Ehrlich, Relation between partial diffusion coefficients in alloys and their swelling behaviour under fast neutron irradiation, J. Nucl. Mater. 60, 347 (1976) [CrossRef] [Google Scholar]
  37. R. Stoller, M. Toloczko, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Meth. Phys. Res. 310, 75 (2013) [Google Scholar]
  38. F.A. Garner, in Comprehensive Nuclear Materials (Elsevier Ltd., USA, 2012), Chap. 4.02 [Google Scholar]
  39. F.A. Garner, W.G. Wolfer, The effect of solute additions on void nucleation, J. Nucl. Mater. 102, 143 (1981) [CrossRef] [Google Scholar]
  40. L.K. Mansur, H. Yoo, The effects of impurity trapping on irradiation-induced swelling and creep, J. Nucl. Mater. 74, 228 (1978) [CrossRef] [Google Scholar]
  41. T. Muroga, F. Garner, Microstructural investigation of swelling dependence on nickel content in fast neutron-irradiated Fe–Cr–Ni austenitic ternaries, J. Nucl. Mater. 179, 546 (1991) [CrossRef] [Google Scholar]
  42. J. Bates, R. Powell, Irradiation-induced swelling in commercial alloys, J. Nucl. Mater. 102, 200 (1981) [CrossRef] [Google Scholar]
  43. T. Muroga, F.A. Garner, J.M. McCarthy, Influence of nickel content on microstructures of Fe–Cr–Ni austenitic ternaries irradiated with fast neutrons or heavy ions, in Effect of Radiation on Materials, 15th Int. Symp., Philadelphia, USA (1992), p. 1015 [Google Scholar]
  44. W.G. Wolfer, L.K. Mansur, The capture efficiency of coated voids, J. Nucl. Mater. 91, 265 (1980) [CrossRef] [Google Scholar]
  45. J.J. Hoyt, F.A. Garner, The solute dependence of bias factors in Irradiated Fe–Ni alloys, J. Nucl. Mater. 179, 1096 (1991) [CrossRef] [Google Scholar]
  46. L. Mansur, W. Wolfer, Influence of a surface coating on void formation, J. Nucl. Mater. 70, 825 (1978) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.