Open Access
EPJ Nuclear Sci. Technol.
Volume 2, 2016
Article Number 35
Number of page(s) 11
Published online 09 September 2016
  1. I. Pioro, R. Duffey, Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications (ASME Press, New York, 2007) [CrossRef]
  2. H. Thind, Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP, Master Thesis, University of Ontario Institute of Technology, Ontario, 2012
  3. W. Wagner, H.-J. Kretzschmar, International Steam Tables. Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Springer, Berlin, 2008), 2nd ed.
  4. I.L. Pioro, H.F. Khartabil, R.B. Duffey, Heat transfer to supercritical fluids flowing in channels – empirical correlations (survey), Nucl. Eng. Des. 230, 69 (2004) [CrossRef]
  5. F.W. Dittus, L.M. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Transf. 12, 3 (1930) [CrossRef]
  6. W. McAdams, Heat Transmission (McGraw-Hill, New York, 1942), 2nd ed.
  7. A.A. Bishop, R.O. Sandberg, L.S. Tong, High Temperature Supercritical Pressure Water Loop: Part IV, Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Super-Critical Pressures (Westinghouse Electric Corporation, Pittsburgh, Pennsylvania, 1964)
  8. H.S. Swenson, J.R. Carver, C.R. Kakarala, Heat transfer to supercritical water in smooth-bore tubes, J. Heat Transf. Trans. ASME Series C 87, 477 (1965) [CrossRef]
  9. S. Mokry, A. Farah, K. King, S. Gupta, I. Pioro, P. Kirillov, Development of supercritical water heat-transfer correlation for vertical bare tubes, Nucl. Eng. Des. 241, 1126 (2011) [CrossRef]
  10. N.M. Schnurr, V.S. Sastry, A.B. Shapiro, A numerical analysis of heat transfer to fluids near the thermodynamic critical point including the thermal entrance region, J. Heat Transf. Trans. ASME 98, 609 (1976) [CrossRef]
  11. T. Schulenberg, J. Starflinger, Core design concepts for high performance light water reactors, Nucl. Eng. Technol. 39, 249 (2007) [CrossRef]
  12. J. Hofmeister, C. Waata, J. Starflinger, T. Schulenberg, E. Laurien, Fuel assembly design study for a reactor with supercritical water, Nucl. Eng. Des. 237, 1513 (2007) [CrossRef]
  13. T. Reiss, S. Fehér, S. Czifrus, Coupled neutronics and thermohydraulics calculations with burn-up for HPLWRs, Prog. Nucl. Energy 50, 52 (2008) [CrossRef]
  14. T. Schulenberg, J. Starflinger, High Performance Light Water Reactor. Design and Analyses (KIT Scientific Publishing, Germany, 2012)
  15. A.M. Barragán-Martínez, Diseño neutrónico y termohidráulico de un reactor nuclear enfriado con agua supercrítica, PhD Thesis, Universidad Nacional Autónoma de México, Mexico City, 2013
  16. G. Espinosa-Paredes, E.-G. Espinosa-Martínez, Fuel rod model based on Non-Fourier heat conduction equation, Ann. Nucl. Energy 36, 680 (2009) [CrossRef]
  17. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980)
  18. A.M. Barragán-Martínez, C. Martin-del-Campo, J.-L. François, G. Espinosa-Paredes, MCNPX and HELIOS-2 comparison for the neutronics calculations of a Supercritical Water Reactor HPLWR, Ann. Nucl. Energy 51, 181 (2013) [CrossRef]
  19. J. Duderstadt, L. Hamilton, Nuclear Reactor Analysis (John Wiley & Sons, United States of America, 1976)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.