Issue |
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Progress in the Science and Technology of Nuclear Reactors using Molten Salts
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 14 | |
Section | Design of reactor | |
DOI | https://doi.org/10.1051/epjn/2019028 | |
Published online | 15 November 2019 |
https://doi.org/10.1051/epjn/2019028
Regular Article
Simplified 0-D semi-analytical model for fuel draining in molten salt reactors
1
Politecnico di Torino, Dipartimento Energia, NEMO group,
Torino,
Italy
2
Politecnico di Milano, Department of Energy, Nuclear Engineering Division,
Milano,
Italy
* e-mail: antonio.cammi@polimi.it
Received:
23
April
2019
Received in final form:
15
July
2019
Accepted:
26
August
2019
Published online: 15 November 2019
A key feature of molten salt reactors is the possibility to reconfigure the fuel geometry (actively or passively driven by gravitational forces) in case of accidents. In this regard, the design of reference molten salt reactor of Generation IV International Forum, the MSFR, foresees the Emergency core Draining System (EDS). Therefore, the research and development of MSFRs move in the direction to study and investigate the dynamics of the fuel salt when it is drained in case of accidental situations. In case of emergency, the salt could be drained out from the core, actively or passively triggered by melting of salt plugs, and stored into a draining tank underneath the core. During the draining transient, it is relevant from a safety point of view that thermal and mechanical damages to core internal surfaces and to EDS structure – caused by the temperature increase due to the decay heat – are avoided. In addition, the subcriticality of the fuel salt should be granted during all the draining transients. A simplified zero-dimensional semi-analytical model is developed in this paper to capture the multiphysics interactions, to separate and analyse the different physical phenomena involved and to focus on time evolutions of temperature and system reactivity. Results demonstrate that the fuel draining occurs in safe conditions, both from the thermal (temperature-related internal surface damages) and neutronic (sub-critical states dominate the transient) view points and show which are the main characteristics of the fuel salt draining transient.
© F. Di Lecce et al. published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.