Issue |
EPJ Nuclear Sci. Technol.
Volume 4, 2018
Special Issue on 4th International Workshop on Nuclear Data Covariances, October 2–6, 2017, Aix en Provence, France – CW2017
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 10 | |
Section | Covariance Evaluation Methodology | |
DOI | https://doi.org/10.1051/epjn/2018013 | |
Published online | 14 November 2018 |
https://doi.org/10.1051/epjn/2018013
Regular Article
Estimating model bias over the complete nuclide chart with sparse Gaussian processes at the example of INCL/ABLA and double-differential neutron spectra
Irfu, CEA, Université Paris-Saclay,
91191
Gif-sur-Yvette, France
* e-mail: georg.schnabel@nucleardata.com
Received:
7
November
2017
Received in final form:
2
February
2018
Accepted:
4
May
2018
Published online: 14 November 2018
Predictions of nuclear models guide the design of nuclear facilities to ensure their safe and efficient operation. Because nuclear models often do not perfectly reproduce available experimental data, decisions based on their predictions may not be optimal. Awareness about systematic deviations between models and experimental data helps to alleviate this problem. This paper shows how a sparse approximation to Gaussian processes can be used to estimate the model bias over the complete nuclide chart at the example of inclusive double-differential neutron spectra for incident protons above 100 MeV. A powerful feature of the presented approach is the ability to predict the model bias for energies, angles, and isotopes where data are missing. The number of experimental data points that can be taken into account is at least in the order of magnitude of 104 thanks to the sparse approximation. The approach is applied to the Liège intranuclear cascade model coupled to the evaporation code ABLA. The results suggest that sparse Gaussian process regression is a viable candidate to perform global and quantitative assessments of models. Limitations of a philosophical nature of this (and any other) approach are also discussed.
© G. Schnabel, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.