Issue |
EPJ Nuclear Sci. Technol.
Volume 3, 2017
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjn/2016040 | |
Published online | 30 January 2017 |
https://doi.org/10.1051/epjn/2016040
Regular Article
Positron annihilation spectroscopy study of lattice defects in non-irradiated doped and un-doped fuels
Nuclear Energy and Safety Department, Paul Scherrer Institut,
5232
Villigen PSI, Switzerland
⁎ e-mail: melanie.chollet@psi.ch
Received:
23
September
2015
Received in final form:
17
June
2016
Accepted:
5
December
2016
Published online: 30 January 2017
Fission gas behavior within the fuel structure plays a major role for the safety of nuclear fuels during operation in the nuclear power plant. Fission gas distribution and retention is determined by both, micro- and lattice-structure of the fuel matrix. The ADOPT (Advanced Doped Pellet Technology) fuel, containing chromium and aluminum additives, shows larger grain sizes than standard (undoped) UO2 fuel, enhancing the fission gas retention properties of the matrix. However, the additions of such trivalent cations shall also induce defects in the lattice. In this study, we investigated the microstructure of such doped fuels as well as a reference standard UO2 by positron annihilation spectroscopy (PAS). Although this technique is particularly sensitive to lattice point defects in materials, a wider application in the UO2 research is still missing. The PAS-lifetime components were measured in the hotlab facility of PSI using a 22Na source sandwiched between two 500-μm-thin sample discs. The values of lifetime at the center and the rim of both samples, examined to check at the radial homogeneity of the pellets, are not significantly different. The mean lifetimes were found to be longer in the ADOPT material, 220 ps, than in standard UO2, 190 ps, which indicates a larger presence of additional defects, presumably generated by the dopants. While two-component decomposition (bulk + one defect component) could be performed for the standard material, only one lifetime component was found in the doped material. The absence of the bulk component in the ADOPT sample refers to a saturated positron trapping (i.e., all positrons are trapped at defects). In order to associate a type of lattice defect to each PAS component, interpretation of the PAS experimental observations was conducted with respect to existing experimental and modeling studies. This work has shown the efficiency of PAS to detect lattice point defects in UO2 produced by Cr and Al oxides. These additives create lattice irregularities, which are acting as sinks for fission products on one hand and trapping positrons on the other hand. Fitting of the obtained experimental data with a suitable theoretical model can provide a valuable qualitative assessment of these defects. At this stage of the research, some of the existing models were used for this purpose.
© M. Chollet et al., published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.