Issue |
EPJ Nuclear Sci. Technol.
Volume 2, 2016
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjn/2016008 | |
Published online | 08 April 2016 |
https://doi.org/10.1051/epjn/2016008
Regular Article
Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly
Part A: under tensile loading condition
Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, PO Box No. 1847, 44000 Islamabad, Pakistan
⁎ e-mail: wazim_me@hotmail.com
Received:
10
September
2015
Received in final form:
26
November
2015
Accepted:
28
January
2016
Published online:
8
April
2016
Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA) of Chashma Nuclear Power Plant-1 (CHASNUPP-1) at room temperature in air. The non-linear contact and structural tensile analysis have been performed using ANSYS 13.0, in order to determine the fuel assembly (FA) elongation behaviour as well as the location and values of the stress intensity and stresses developed in axial direction under applied tensile load of 9800 N or 2 g being the fuel assembly handling or lifting load [Y. Zhang et al., Fuel assembly design report, SNERDI, China, 1994]. The finite element (FE) model comprises spacer grids, fuel rods, flexible contacts between the fuel rods and grid's supports system and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behavior of the geometry is non-linear due to its curvature or design tolerance. It has been observed that fuel assembly elongation values obtained through FE analysis and experiment [SNERDI Tech. Doc., Mechanical strength and calculation for fuel assembly, Technical Report, F3.2.1, China, 1994] under applied tensile load are comparable and show approximately linear behaviors. Therefore, it seems that the permanent elongation of fuel assembly may not occur at the specified load. Moreover, the values of stresses obtained at different locations of the fuel assembly are also comparable with the stress values of the experiment determined at the same locations through strain gauges. Since the results of both studies (analytical and experimental) are comparable, therefore, validation of the FE methodology is confirmed. The stress intensity of the FE model and maximum stresses developed along the guide thimbles in axial direction are less than the design stress limit of the materials used for the grid [ASTM, Standard specification for precipitation hardening nickel alloy (UNSN07718) plate, sheet, and strip for high temperature service, B 670-80, USA, 2013], fuel rod [ASTM, Standard specification for wrought zirconium alloy seamless tubes for nuclear reactor fuel cladding, B 811-02, USA, 2002] and the guide thimble [ASTM, Standard specification for seamless stainless steel mechanical tubing, A 511-04, USA, 2004]. Therefore, the structural integrity criterion of CHASNUPP-1 fuel assembly is fulfilled safely at the specified tensile load.
© Waseem et al., published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.