Issue |
EPJ Nuclear Sci. Technol.
Volume 1, 2015
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/epjn/e2015-50022-3 | |
Published online | 16 December 2015 |
https://doi.org/10.1051/epjn/e2015-50022-3
Regular Article
Evaluation of relevant information for optimal reflector modeling through data assimilation procedures
EDF Recherche et développement, 1 avenue du Général de Gaulle, 92141 Clamart cedex, France
* e-mail: jean-philippe.argaud@edf.fr
Received:
6
May
2015
Received in final form:
28
July
2015
Accepted:
6
November
2015
Published online:
16
December
2015
The goal of this study is to look after the amount of information that is mandatory to get a relevant parameters optimisation by data assimilation for physical models in neutronic diffusion calculations, and to determine what is the best information to reach the optimum of accuracy at the cheapest cost. To evaluate the quality of the optimisation, we study the covariance matrix that represents the accuracy of the optimised parameter. This matrix is a classical output of the data assimilation procedure, and it is the main information about accuracy and sensitivity of the parameter optimal determination. From these studies, we present some results collected from the neutronic simulation of nuclear power plants. On the basis of the configuration studies, it has been shown that with data assimilation we can determine a global strategy to optimise the quality of the result with respect to the amount of information provided. The consequence of this is a cost reduction in terms of measurement and/or computing time with respect to the basic approach.
© J.-P. Argaud et al., published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.